Basant S Abd El-Wahab, Mohamed E Nasr, Salah Khamis, Amira S Ashour
{"title":"BTC-fCNN: Fast Convolution Neural Network for Multi-class Brain Tumor Classification.","authors":"Basant S Abd El-Wahab, Mohamed E Nasr, Salah Khamis, Amira S Ashour","doi":"10.1007/s13755-022-00203-w","DOIUrl":null,"url":null,"abstract":"<p><p>Timely prognosis of brain tumors has a crucial role for powerful healthcare of remedy-making plans. Manual classification of the brain tumors in magnetic resonance imaging (MRI) images is a challenging task, which relies on the experienced radiologists to identify and classify the brain tumor. Automated classification of different brain tumors is significant based on designing computer-aided diagnosis (CAD) systems. Existing classification methods suffer from unsatisfactory performance and/or large computational cost/ time. This paper proposed a fast and efficient classification process, called BTC-fCNN, which is a deep learning-based system to distinguish between different views of three brain tumor types, namely meningioma, glioma, and pituitary tumors. The proposed system's model was applied on MRI images from the Figshare dataset. It consists of 13 layers with few trainable parameters involving convolution layer, 1 × 1 convolution layer, average pooling, fully connected layer, and softmax layer. Five iterations including transfer learning and five-fold cross-validation for retraining are considered to increase the proposed model performance. The proposed model achieved 98.63% average accuracy, using five iterations with transfer learning, and 98.86% using retrained five-fold cross-validation (internal transfer learning between the folds). Various evaluation metrics were measured to evaluate the proposed model, such as precision, F-score, recall, specificity and confusion matrix. The proposed BTC-fCNN model outstrips the state-of-the-art and other well-known convolution neural networks (CNN).</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"11 1","pages":"3"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9807719/pdf/","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-022-00203-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 10
Abstract
Timely prognosis of brain tumors has a crucial role for powerful healthcare of remedy-making plans. Manual classification of the brain tumors in magnetic resonance imaging (MRI) images is a challenging task, which relies on the experienced radiologists to identify and classify the brain tumor. Automated classification of different brain tumors is significant based on designing computer-aided diagnosis (CAD) systems. Existing classification methods suffer from unsatisfactory performance and/or large computational cost/ time. This paper proposed a fast and efficient classification process, called BTC-fCNN, which is a deep learning-based system to distinguish between different views of three brain tumor types, namely meningioma, glioma, and pituitary tumors. The proposed system's model was applied on MRI images from the Figshare dataset. It consists of 13 layers with few trainable parameters involving convolution layer, 1 × 1 convolution layer, average pooling, fully connected layer, and softmax layer. Five iterations including transfer learning and five-fold cross-validation for retraining are considered to increase the proposed model performance. The proposed model achieved 98.63% average accuracy, using five iterations with transfer learning, and 98.86% using retrained five-fold cross-validation (internal transfer learning between the folds). Various evaluation metrics were measured to evaluate the proposed model, such as precision, F-score, recall, specificity and confusion matrix. The proposed BTC-fCNN model outstrips the state-of-the-art and other well-known convolution neural networks (CNN).
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.