Inequalities for higher order differences of the logarithm of the overpartition function and a problem of Wang-Xie-Zhang.

IF 0.6 Q3 MATHEMATICS
Gargi Mukherjee
{"title":"Inequalities for higher order differences of the logarithm of the overpartition function and a problem of Wang-Xie-Zhang.","authors":"Gargi Mukherjee","doi":"10.1007/s40993-022-00420-y","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math> <mrow><mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> denote the overpartition function. In this paper, our primary goal is to study the asymptotic behavior of the finite differences of the logarithm of the overpartition function, i.e., <math> <mrow> <msup><mrow><mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <msup><mi>Δ</mi> <mi>r</mi></msup> <mo>log</mo> <mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> , by studying the inequality of the following form <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mo>log</mo> <mrow><mo>(</mo></mrow> <mn>1</mn> <mo>+</mo> <mstyle> <mfrac><mrow><mi>C</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <msup><mi>n</mi> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msup> </mfrac> </mstyle> <mo>-</mo> <mstyle> <mfrac><mrow><mn>1</mn> <mo>+</mo> <msub><mi>C</mi> <mn>1</mn></msub> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> </mrow> <msup><mi>n</mi> <mi>r</mi></msup> </mfrac> </mstyle> <mrow><mo>)</mo></mrow> <mrow></mrow></mrow> </mtd> <mtd><mrow><mrow></mrow> <mo><</mo> <msup><mrow><mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <msup><mi>Δ</mi> <mi>r</mi></msup> <mo>log</mo> <mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </mtd> </mtr> <mtr> <mtd><mrow><mrow></mrow> <mrow></mrow> <mrow></mrow></mrow> </mtd> <mtd><mrow><mrow></mrow> <mo><</mo> <mo>log</mo> <mrow><mo>(</mo></mrow> <mn>1</mn> <mo>+</mo> <mstyle> <mfrac><mrow><mi>C</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <msup><mi>n</mi> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msup> </mfrac> </mstyle> <mrow><mo>)</mo></mrow> <mspace></mspace> <mtext>for</mtext> <mspace></mspace> <mi>n</mi> <mo>≥</mo> <mi>N</mi> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> where <math><mrow><mi>C</mi> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <mo>,</mo> <msub><mi>C</mi> <mn>1</mn></msub> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <mo>,</mo> <mtext>and</mtext> <mspace></mspace> <mi>N</mi> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> </mrow> </math> are computable constants depending on the positive integer <i>r</i>, determined explicitly. This solves a problem posed by Wang, Xie and Zhang in the context of searching for a better lower bound of <math> <mrow> <msup><mrow><mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <msup><mi>Δ</mi> <mi>r</mi></msup> <mo>log</mo> <mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> than 0. By settling the problem, we are able to show that <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><munder><mo>lim</mo> <mrow><mi>n</mi> <mo>→</mo> <mi>∞</mi></mrow> </munder> <msup><mrow><mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <msup><mi>Δ</mi> <mi>r</mi></msup> <mo>log</mo> <mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> <mo>=</mo> <mstyle><mfrac><mi>π</mi> <mn>2</mn></mfrac> </mstyle> <mrow><mo>(</mo></mrow> <mstyle><mfrac><mn>1</mn> <mn>2</mn></mfrac> </mstyle> <msub><mrow><mo>)</mo></mrow> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn></mrow> </msub> <msup><mi>n</mi> <mrow><mfrac><mn>1</mn> <mn>2</mn></mfrac> <mo>-</mo> <mi>r</mi></mrow> </msup> <mo>.</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math></dispformula>.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763134/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-022-00420-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let p ¯ ( n ) denote the overpartition function. In this paper, our primary goal is to study the asymptotic behavior of the finite differences of the logarithm of the overpartition function, i.e., ( - 1 ) r - 1 Δ r log p ¯ ( n ) , by studying the inequality of the following form log ( 1 + C ( r ) n r - 1 / 2 - 1 + C 1 ( r ) n r ) < ( - 1 ) r - 1 Δ r log p ¯ ( n ) < log ( 1 + C ( r ) n r - 1 / 2 ) for n N ( r ) , where C ( r ) , C 1 ( r ) , and N ( r ) are computable constants depending on the positive integer r, determined explicitly. This solves a problem posed by Wang, Xie and Zhang in the context of searching for a better lower bound of ( - 1 ) r - 1 Δ r log p ¯ ( n ) than 0. By settling the problem, we are able to show that lim n ( - 1 ) r - 1 Δ r log p ¯ ( n ) = π 2 ( 1 2 ) r - 1 n 1 2 - r . .

过配分函数的对数高阶差分不等式及王协章问题。
让¯p (n) denote《overpartition功能。在这篇文章里,我们主要的目标是需要研究的有限的分歧asymptotic社会行为》《overpartition logarithm功能,神盾局(- 1)r - 1Δr p¯日志不平等》(n),由studying跟踪日志表格(1 + C (r) n r - 1 / 2 - 1 + C (r) n r ) ( - 1) r - 1Δr p¯日志(n ) log (1 + C (r) n r - 1 / 2)为n≥n (r ) , 在C (r)、C (r)N (r)经常依赖于积极的英特尔r,有决心的excitly。这个solves a posed问题由王,谢》和《张》背景下束缚在寻找一个更好的(- 1)r - 1Δr p¯日志(n)比0 - 9。settling偏难题,我们能干展示的lim) n→∞(- 1)r - 1Δr p¯日志(n) =π2 (1)r - n 1 2 r。。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
12.50%
发文量
88
期刊介绍: Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信