{"title":"Inequalities for higher order differences of the logarithm of the overpartition function and a problem of Wang-Xie-Zhang.","authors":"Gargi Mukherjee","doi":"10.1007/s40993-022-00420-y","DOIUrl":null,"url":null,"abstract":"<p><p>Let <math> <mrow><mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> denote the overpartition function. In this paper, our primary goal is to study the asymptotic behavior of the finite differences of the logarithm of the overpartition function, i.e., <math> <mrow> <msup><mrow><mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <msup><mi>Δ</mi> <mi>r</mi></msup> <mo>log</mo> <mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> , by studying the inequality of the following form <dispformula> <math> <mrow> <mtable> <mtr> <mtd><mrow><mo>log</mo> <mrow><mo>(</mo></mrow> <mn>1</mn> <mo>+</mo> <mstyle> <mfrac><mrow><mi>C</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <msup><mi>n</mi> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msup> </mfrac> </mstyle> <mo>-</mo> <mstyle> <mfrac><mrow><mn>1</mn> <mo>+</mo> <msub><mi>C</mi> <mn>1</mn></msub> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> </mrow> <msup><mi>n</mi> <mi>r</mi></msup> </mfrac> </mstyle> <mrow><mo>)</mo></mrow> <mrow></mrow></mrow> </mtd> <mtd><mrow><mrow></mrow> <mo><</mo> <msup><mrow><mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <msup><mi>Δ</mi> <mi>r</mi></msup> <mo>log</mo> <mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </mtd> </mtr> <mtr> <mtd><mrow><mrow></mrow> <mrow></mrow> <mrow></mrow></mrow> </mtd> <mtd><mrow><mrow></mrow> <mo><</mo> <mo>log</mo> <mrow><mo>(</mo></mrow> <mn>1</mn> <mo>+</mo> <mstyle> <mfrac><mrow><mi>C</mi> <mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <msup><mi>n</mi> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn> <mo>/</mo> <mn>2</mn></mrow> </msup> </mfrac> </mstyle> <mrow><mo>)</mo></mrow> <mspace></mspace> <mtext>for</mtext> <mspace></mspace> <mi>n</mi> <mo>≥</mo> <mi>N</mi> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <mo>,</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math> </dispformula> where <math><mrow><mi>C</mi> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <mo>,</mo> <msub><mi>C</mi> <mn>1</mn></msub> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> <mo>,</mo> <mtext>and</mtext> <mspace></mspace> <mi>N</mi> <mrow><mo>(</mo> <mi>r</mi> <mo>)</mo></mrow> </mrow> </math> are computable constants depending on the positive integer <i>r</i>, determined explicitly. This solves a problem posed by Wang, Xie and Zhang in the context of searching for a better lower bound of <math> <mrow> <msup><mrow><mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <msup><mi>Δ</mi> <mi>r</mi></msup> <mo>log</mo> <mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </mrow> </math> than 0. By settling the problem, we are able to show that <dispformula> <math> <mrow> <mtable> <mtr> <mtd> <mrow><munder><mo>lim</mo> <mrow><mi>n</mi> <mo>→</mo> <mi>∞</mi></mrow> </munder> <msup><mrow><mo>(</mo> <mo>-</mo> <mn>1</mn> <mo>)</mo></mrow> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn></mrow> </msup> <msup><mi>Δ</mi> <mi>r</mi></msup> <mo>log</mo> <mover><mi>p</mi> <mo>¯</mo></mover> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> <mo>=</mo> <mstyle><mfrac><mi>π</mi> <mn>2</mn></mfrac> </mstyle> <mrow><mo>(</mo></mrow> <mstyle><mfrac><mn>1</mn> <mn>2</mn></mfrac> </mstyle> <msub><mrow><mo>)</mo></mrow> <mrow><mi>r</mi> <mo>-</mo> <mn>1</mn></mrow> </msub> <msup><mi>n</mi> <mrow><mfrac><mn>1</mn> <mn>2</mn></mfrac> <mo>-</mo> <mi>r</mi></mrow> </msup> <mo>.</mo></mrow> </mtd> </mtr> </mtable> </mrow> </math></dispformula>.</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763134/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-022-00420-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let denote the overpartition function. In this paper, our primary goal is to study the asymptotic behavior of the finite differences of the logarithm of the overpartition function, i.e., , by studying the inequality of the following form where are computable constants depending on the positive integer r, determined explicitly. This solves a problem posed by Wang, Xie and Zhang in the context of searching for a better lower bound of than 0. By settling the problem, we are able to show that .
期刊介绍:
Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.