{"title":"Large-Scale Image Retrieval with Deep Attentive Global Features.","authors":"Yingying Zhu, Yinghao Wang, Haonan Chen, Zemian Guo, Qiang Huang","doi":"10.1142/S0129065723500132","DOIUrl":null,"url":null,"abstract":"<p><p>How to obtain discriminative features has proved to be a core problem for image retrieval. Many recent works use convolutional neural networks to extract features. However, clutter and occlusion will interfere with the distinguishability of features when using convolutional neural network (CNN) for feature extraction. To address this problem, we intend to obtain high-response activations in the feature map based on the attention mechanism. We propose two attention modules, a spatial attention module and a channel attention module. For the spatial attention module, we first capture the global information and model the relation between channels as a region evaluator, which evaluates and assigns new weights to local features. For the channel attention module, we use a vector with trainable parameters to weight the importance of each feature map. The two attention modules are cascaded to adjust the weight distribution for the feature map, which makes the extracted features more discriminative. Furthermore, we present a scale and mask scheme to scale the major components and filter out the meaningless local features. This scheme can reduce the disadvantages of the various scales of the major components in images by applying multiple scale filters, and filter out the redundant features with the <i>MAX-Mask</i>. Exhaustive experiments demonstrate that the two attention modules are complementary to improve performance, and our network with the three modules outperforms the state-of-the-art methods on four well-known image retrieval datasets.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"33 3","pages":"2350013"},"PeriodicalIF":6.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500132","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
How to obtain discriminative features has proved to be a core problem for image retrieval. Many recent works use convolutional neural networks to extract features. However, clutter and occlusion will interfere with the distinguishability of features when using convolutional neural network (CNN) for feature extraction. To address this problem, we intend to obtain high-response activations in the feature map based on the attention mechanism. We propose two attention modules, a spatial attention module and a channel attention module. For the spatial attention module, we first capture the global information and model the relation between channels as a region evaluator, which evaluates and assigns new weights to local features. For the channel attention module, we use a vector with trainable parameters to weight the importance of each feature map. The two attention modules are cascaded to adjust the weight distribution for the feature map, which makes the extracted features more discriminative. Furthermore, we present a scale and mask scheme to scale the major components and filter out the meaningless local features. This scheme can reduce the disadvantages of the various scales of the major components in images by applying multiple scale filters, and filter out the redundant features with the MAX-Mask. Exhaustive experiments demonstrate that the two attention modules are complementary to improve performance, and our network with the three modules outperforms the state-of-the-art methods on four well-known image retrieval datasets.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.