{"title":"Driver Drowsiness EEG Detection Based on Tree Federated Learning and Interpretable Network.","authors":"Xue Qin, Yi Niu, Huiyu Zhou, Xiaojie Li, Weikuan Jia, Yuanjie Zheng","doi":"10.1142/S0129065723500090","DOIUrl":null,"url":null,"abstract":"<p><p>Accurate identification of driver's drowsiness state through Electroencephalogram (EEG) signals can effectively reduce traffic accidents, but EEG signals are usually stored in various clients in the form of small samples. This study attempts to construct an efficient and accurate privacy-preserving drowsiness monitoring system, and proposes a fusion model based on tree Federated Learning (FL) and Convolutional Neural Network (CNN), which can not only identify and explain the driver's drowsiness state, but also integrate the information of different clients under the premise of privacy protection. Each client uses CNN with the Global Average Pooling (GAP) layer and shares model parameters. The tree FL transforms communication relationships into a graph structure, and model parameters are transmitted in parallel along connected branches of the graph. Moreover, the Class Activation Mapping (CAM) is used to find distinctive EEG features for representing specific classes. On EEG data of 11 subjects, it is found that this method has higher average accuracy, F1-score and AUC than the traditional classification method, reaching 73.56%, 73.26% and 78.23%, respectively. Compared with the traditional FL algorithm, this method better protects the driver's privacy and improves communication efficiency.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"33 3","pages":"2350009"},"PeriodicalIF":6.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500090","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Accurate identification of driver's drowsiness state through Electroencephalogram (EEG) signals can effectively reduce traffic accidents, but EEG signals are usually stored in various clients in the form of small samples. This study attempts to construct an efficient and accurate privacy-preserving drowsiness monitoring system, and proposes a fusion model based on tree Federated Learning (FL) and Convolutional Neural Network (CNN), which can not only identify and explain the driver's drowsiness state, but also integrate the information of different clients under the premise of privacy protection. Each client uses CNN with the Global Average Pooling (GAP) layer and shares model parameters. The tree FL transforms communication relationships into a graph structure, and model parameters are transmitted in parallel along connected branches of the graph. Moreover, the Class Activation Mapping (CAM) is used to find distinctive EEG features for representing specific classes. On EEG data of 11 subjects, it is found that this method has higher average accuracy, F1-score and AUC than the traditional classification method, reaching 73.56%, 73.26% and 78.23%, respectively. Compared with the traditional FL algorithm, this method better protects the driver's privacy and improves communication efficiency.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.