Megan J Schroeder, Samuel A Acuña, Chandramouli Krishnan, Yasin Y Dhaher
{"title":"Can Increased Locomotor Task Difficulty Differentiate Knee Muscle Forces After Anterior Cruciate Ligament Reconstruction?","authors":"Megan J Schroeder, Samuel A Acuña, Chandramouli Krishnan, Yasin Y Dhaher","doi":"10.1123/jab.2021-0215","DOIUrl":null,"url":null,"abstract":"<p><p>Changes in knee mechanics following anterior cruciate ligament (ACL) reconstruction are known to be magnified during more difficult locomotor tasks, such as when descending stairs. However, it is unclear if increased task difficulty could distinguish differences in forces generated by the muscles surrounding the knee. This study examined how knee muscle forces differ between individuals with ACL reconstruction with different graft types (hamstring tendon and patellar tendon autograft) and \"healthy\" controls when performing tasks with increasing difficulty. Dynamic simulations were used to identify knee muscle forces in 15 participants when walking overground and descending stairs. The analysis was restricted to the stance phase (foot contact through toe-off), yielding 162 separate simulations of locomotion in increasing difficulty: overground walking, step-to-floor stair descent, and step-to-step stair descent. Results indicated that knee muscle forces were significantly reduced after ACL reconstruction, and stair descent tasks better discriminated changes in the quadriceps and gastrocnemii muscle forces in the reconstructed knees. Changes in quadriceps forces after a patellar tendon graft and changes in gastrocnemii forces after a hamstring tendon graft were only revealed during stair descent. These results emphasize the importance of incorporating sufficiently difficult tasks to detect residual deficits in muscle forces after ACL reconstruction.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"38 2","pages":"84-94"},"PeriodicalIF":1.1000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1123/jab.2021-0215","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Changes in knee mechanics following anterior cruciate ligament (ACL) reconstruction are known to be magnified during more difficult locomotor tasks, such as when descending stairs. However, it is unclear if increased task difficulty could distinguish differences in forces generated by the muscles surrounding the knee. This study examined how knee muscle forces differ between individuals with ACL reconstruction with different graft types (hamstring tendon and patellar tendon autograft) and "healthy" controls when performing tasks with increasing difficulty. Dynamic simulations were used to identify knee muscle forces in 15 participants when walking overground and descending stairs. The analysis was restricted to the stance phase (foot contact through toe-off), yielding 162 separate simulations of locomotion in increasing difficulty: overground walking, step-to-floor stair descent, and step-to-step stair descent. Results indicated that knee muscle forces were significantly reduced after ACL reconstruction, and stair descent tasks better discriminated changes in the quadriceps and gastrocnemii muscle forces in the reconstructed knees. Changes in quadriceps forces after a patellar tendon graft and changes in gastrocnemii forces after a hamstring tendon graft were only revealed during stair descent. These results emphasize the importance of incorporating sufficiently difficult tasks to detect residual deficits in muscle forces after ACL reconstruction.
期刊介绍:
The mission of the Journal of Applied Biomechanics (JAB) is to disseminate the highest quality peer-reviewed studies that utilize biomechanical strategies to advance the study of human movement. Areas of interest include clinical biomechanics, gait and posture mechanics, musculoskeletal and neuromuscular biomechanics, sport mechanics, and biomechanical modeling. Studies of sport performance that explicitly generalize to broader activities, contribute substantially to fundamental understanding of human motion, or are in a sport that enjoys wide participation, are welcome. Also within the scope of JAB are studies using biomechanical strategies to investigate the structure, control, function, and state (health and disease) of animals.