Sagar Kothari, Steven G Kefalos, Nicholas D Hages, Timothy E Corcoran, Shahid Husain
{"title":"Preclinical Studies of the Nebulized Delivery of Liposomal Amphotericin B.","authors":"Sagar Kothari, Steven G Kefalos, Nicholas D Hages, Timothy E Corcoran, Shahid Husain","doi":"10.1089/jamp.2022.0003","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Intravenous liposomal amphotericin B (L-AMB) has accompanying side effects that may be diminished when administering an inhaled form. Delivery systems for inhaled or aerosolized L-AMB vary, and there has not been a recent comparison of available systems to date. <b><i>Methods:</i></b> We compared three differently designed nebulizer delivery systems for the inhaled delivery of L-AMB to determine the best combination of efficient lung dosing and treatment time. Aerosol size was measured using a Malvern Mastersizer, and five separate nebulizers were tested. For drug output measurements, a Harvard Lung was used, and aerosol was collected using HEPA filters. <b><i>Results:</i></b> Overall aerosol size characteristics were similar for all devices with volume median diameters in the 4-5 μm range. The highest inhaled dose was delivered by the AeroEclipse. The Aerogen and the AeroEclipse had similar predicted pulmonary doses, and the AeroEclipse had the highest pulmonary delivery rates. <b><i>Conclusion:</i></b> The AeroEclipse nebulizer may provide more efficient delivery in a shorter amount of time; however, human studies are warranted to assess the safety, tolerability, and efficacy of inhaled delivery of L-AMB from this system.</p>","PeriodicalId":14940,"journal":{"name":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","volume":"35 6","pages":"307-312"},"PeriodicalIF":2.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Aerosol Medicine and Pulmonary Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/jamp.2022.0003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 2
Abstract
Background: Intravenous liposomal amphotericin B (L-AMB) has accompanying side effects that may be diminished when administering an inhaled form. Delivery systems for inhaled or aerosolized L-AMB vary, and there has not been a recent comparison of available systems to date. Methods: We compared three differently designed nebulizer delivery systems for the inhaled delivery of L-AMB to determine the best combination of efficient lung dosing and treatment time. Aerosol size was measured using a Malvern Mastersizer, and five separate nebulizers were tested. For drug output measurements, a Harvard Lung was used, and aerosol was collected using HEPA filters. Results: Overall aerosol size characteristics were similar for all devices with volume median diameters in the 4-5 μm range. The highest inhaled dose was delivered by the AeroEclipse. The Aerogen and the AeroEclipse had similar predicted pulmonary doses, and the AeroEclipse had the highest pulmonary delivery rates. Conclusion: The AeroEclipse nebulizer may provide more efficient delivery in a shorter amount of time; however, human studies are warranted to assess the safety, tolerability, and efficacy of inhaled delivery of L-AMB from this system.
期刊介绍:
Journal of Aerosol Medicine and Pulmonary Drug Delivery is the only peer-reviewed journal delivering innovative, authoritative coverage of the health effects of inhaled aerosols and delivery of drugs through the pulmonary system. The Journal is a forum for leading experts, addressing novel topics such as aerosolized chemotherapy, aerosolized vaccines, methods to determine toxicities, and delivery of aerosolized drugs in the intubated patient.
Journal of Aerosol Medicine and Pulmonary Drug Delivery coverage includes:
Pulmonary drug delivery
Airway reactivity and asthma treatment
Inhalation of particles and gases in the respiratory tract
Toxic effects of inhaled agents
Aerosols as tools for studying basic physiologic phenomena.