When neuro-robots go wrong: A review.

IF 2.6 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Muhammad Salar Khan, James L Olds
{"title":"When neuro-robots go wrong: A review.","authors":"Muhammad Salar Khan,&nbsp;James L Olds","doi":"10.3389/fnbot.2023.1112839","DOIUrl":null,"url":null,"abstract":"<p><p>Neuro-robots are a class of autonomous machines that, in their architecture, mimic aspects of the human brain and cognition. As such, they represent unique artifacts created by humans based on human understanding of healthy human brains. European Union's Convention on Roboethics 2025 states that the design of all robots (including neuro-robots) must include provisions for the complete traceability of the robots' actions, analogous to an aircraft's flight data recorder. At the same time, one can anticipate rising instances of neuro-robotic failure, as they operate on imperfect data in real environments, and the underlying AI behind such neuro-robots has yet to achieve explainability. This paper reviews the trajectory of the technology used in neuro-robots and accompanying failures. The failures demand an explanation. While drawing on existing explainable AI research, we argue explainability in AI limits the same in neuro-robots. In order to make robots more explainable, we suggest potential pathways for future research.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"17 ","pages":"1112839"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9935594/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2023.1112839","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Neuro-robots are a class of autonomous machines that, in their architecture, mimic aspects of the human brain and cognition. As such, they represent unique artifacts created by humans based on human understanding of healthy human brains. European Union's Convention on Roboethics 2025 states that the design of all robots (including neuro-robots) must include provisions for the complete traceability of the robots' actions, analogous to an aircraft's flight data recorder. At the same time, one can anticipate rising instances of neuro-robotic failure, as they operate on imperfect data in real environments, and the underlying AI behind such neuro-robots has yet to achieve explainability. This paper reviews the trajectory of the technology used in neuro-robots and accompanying failures. The failures demand an explanation. While drawing on existing explainable AI research, we argue explainability in AI limits the same in neuro-robots. In order to make robots more explainable, we suggest potential pathways for future research.

Abstract Image

当神经机器人出问题时:综述。
神经机器人是一类自主机器,在其结构上模仿人类大脑和认知的各个方面。因此,它们代表了人类基于对健康人脑的理解而创造的独特人工制品。欧盟2025年机器人伦理公约规定,所有机器人(包括神经机器人)的设计必须包括对机器人行为的完全可追溯性的规定,类似于飞机的飞行数据记录仪。与此同时,人们可以预见,神经机器人故障的情况会越来越多,因为它们在真实环境中基于不完善的数据进行操作,而这些神经机器人背后的潜在人工智能尚未实现可解释性。本文回顾了该技术在神经机器人中应用的轨迹及其伴随的故障。这些失败需要一个解释。在借鉴现有的可解释人工智能研究的同时,我们认为人工智能的可解释性限制了神经机器人的可解释性。为了使机器人更易于解释,我们提出了未来研究的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Neurorobotics
Frontiers in Neurorobotics COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCER-ROBOTICS
CiteScore
5.20
自引率
6.50%
发文量
250
审稿时长
14 weeks
期刊介绍: Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide. Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信