{"title":"Evaluation of Disease Suppressiveness of Soils in Croplands by Co-Cultivation of Pathogenic Fusarium oxysporum and Indigenous Soil Microorganisms.","authors":"Masahiro Mitsuboshi, Yuuzou Kioka, Katsunori Noguchi, Susumu Asakawa","doi":"10.1264/jsme2.ME21063","DOIUrl":null,"url":null,"abstract":"<p><p>An evaluation of suppressiveness against soil-borne diseases is important for their control. We herein assessed disease suppression against F. oxysporum f. sp. spinaciae using the Fusarium co-cultivation method in 75 soils collected from croplands around the country. The suppressive effects of soil microbes against F. oxysporum growth were examined by simultaneously culturing soil suspensions and F. oxysporum f. sp. spinaciae on a culture medium. The growth degree of F. oxysporum on the medium varied among the 75 soils tested, and 14 soils showing different degrees of growth were selected to investigate the incidence of spinach wilt by cultivating spinach inoculated with the pathogenic F. oxysporum strain. A correlation (r=0.831, P<0.001) was observed between the disease incidence of spinach wilt and the growth degree of F. oxysporum using the co-cultivation method in the 14 selected soils. No correlations were noted between chemical and biological parameters (including pH and the population density of microbes, except for the growth degree of F. oxysporum) and the growth degree of F. oxysporum and incidence of spinach wilt, indicating that it was not possible to predict the degree of growth or disease incidence based on specific chemical and biological characteristics or their combination. The present results suggest that an evaluation of the growth degree of F. oxysporum by the Fusarium co-cultivation will be useful for diagnosing the disease suppressiveness of soil against pathogenic F. oxysporum in croplands.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"37 4","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9763048/pdf/","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME21063","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 1
Abstract
An evaluation of suppressiveness against soil-borne diseases is important for their control. We herein assessed disease suppression against F. oxysporum f. sp. spinaciae using the Fusarium co-cultivation method in 75 soils collected from croplands around the country. The suppressive effects of soil microbes against F. oxysporum growth were examined by simultaneously culturing soil suspensions and F. oxysporum f. sp. spinaciae on a culture medium. The growth degree of F. oxysporum on the medium varied among the 75 soils tested, and 14 soils showing different degrees of growth were selected to investigate the incidence of spinach wilt by cultivating spinach inoculated with the pathogenic F. oxysporum strain. A correlation (r=0.831, P<0.001) was observed between the disease incidence of spinach wilt and the growth degree of F. oxysporum using the co-cultivation method in the 14 selected soils. No correlations were noted between chemical and biological parameters (including pH and the population density of microbes, except for the growth degree of F. oxysporum) and the growth degree of F. oxysporum and incidence of spinach wilt, indicating that it was not possible to predict the degree of growth or disease incidence based on specific chemical and biological characteristics or their combination. The present results suggest that an evaluation of the growth degree of F. oxysporum by the Fusarium co-cultivation will be useful for diagnosing the disease suppressiveness of soil against pathogenic F. oxysporum in croplands.
评价对土传病害的抑制作用对防治土传病害具有重要意义。采用镰刀菌共栽培的方法,对全国75个农田土壤进行了镰刀菌共栽培对菠菜尖孢镰刀菌的抑制效果评价。通过在培养基上同时培养土壤悬浮液和棘尖孢镰刀菌,研究了土壤微生物对棘尖孢镰刀菌生长的抑制作用。在75种土壤中,尖孢镰刀菌在培养基上的生长程度不同,选择14种生长程度不同的土壤,通过接种致病性尖孢镰刀菌培养菠菜,研究菠菜枯萎病的发生情况。相关性(r=0.831, P
期刊介绍:
Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.