Nanoencapsulation of R-phycoerytrin extracted from Solieria filiformis improves protein stability and enables its biological application as a fluorescent dye.
Jéssica Roberta Pereira Martins, Antonia Livânia Linhares de Aguiar, Karina Alexandre Barros Nogueira, Acrisio José Uchôa Bastos Filho, Thais da Silva Moreira, Márjory Lima Holanda Araújo, Claudia Pessoa, Josimar O Eloy, Ivanildo José da Silva Junior, Raquel Petrilli
{"title":"Nanoencapsulation of R-phycoerytrin extracted from <i>Solieria filiformis</i> improves protein stability and enables its biological application as a fluorescent dye.","authors":"Jéssica Roberta Pereira Martins, Antonia Livânia Linhares de Aguiar, Karina Alexandre Barros Nogueira, Acrisio José Uchôa Bastos Filho, Thais da Silva Moreira, Márjory Lima Holanda Araújo, Claudia Pessoa, Josimar O Eloy, Ivanildo José da Silva Junior, Raquel Petrilli","doi":"10.1080/02652048.2023.2168081","DOIUrl":null,"url":null,"abstract":"<p><p>We aimed to encapsulate R-PE to improve its stability for use as a fluorescent probe for cancer cells. Purified R-PE from the algae <i>Solieria filiformis</i> was encapsulated in polymeric nanoparticles using PCL. Nanoparticles were characterised and R-PE release was evaluated. Also, cellular uptake using breast and prostate cancer cells were performed. Nanoparticles presented nanometric particle size (198.8 ± 0.06 nm) with low polydispersity (0.13 ± 0.022), negative zeta potential (-18.7 ± 1.10 mV), and 50.0 ± 7.3% encapsulation. FTIR revealed that R-PE is molecularly dispersed in PCL. DSC peak at 307 °C indicates the presence of R-PE in the nanoparticle. Also, <i>in vitro</i>, it was demonstrated low release for nanoparticles and degradation for the free R-PE. Finally, cellular uptake demonstrated the potential of R-PE/PCL nanoparticles for cancer cell detection. Nanoparticles loaded with R-PE can overcome instability and allow application as a fluorescent probe for cancer cells.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 1","pages":"37-52"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2023.2168081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 2
Abstract
We aimed to encapsulate R-PE to improve its stability for use as a fluorescent probe for cancer cells. Purified R-PE from the algae Solieria filiformis was encapsulated in polymeric nanoparticles using PCL. Nanoparticles were characterised and R-PE release was evaluated. Also, cellular uptake using breast and prostate cancer cells were performed. Nanoparticles presented nanometric particle size (198.8 ± 0.06 nm) with low polydispersity (0.13 ± 0.022), negative zeta potential (-18.7 ± 1.10 mV), and 50.0 ± 7.3% encapsulation. FTIR revealed that R-PE is molecularly dispersed in PCL. DSC peak at 307 °C indicates the presence of R-PE in the nanoparticle. Also, in vitro, it was demonstrated low release for nanoparticles and degradation for the free R-PE. Finally, cellular uptake demonstrated the potential of R-PE/PCL nanoparticles for cancer cell detection. Nanoparticles loaded with R-PE can overcome instability and allow application as a fluorescent probe for cancer cells.
期刊介绍:
The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation.
The journal covers:
Chemistry of encapsulation materials
Physics of release through the capsule wall and/or desorption from carrier
Techniques of preparation, content and storage
Many uses to which microcapsules are put.