Christian Cintrano;Javier Ferrer;Manuel López-Ibáñez;Enrique Alba
{"title":"Hybridization of Evolutionary Operators with Elitist Iterated Racing for the Simulation Optimization of Traffic Lights Programs","authors":"Christian Cintrano;Javier Ferrer;Manuel López-Ibáñez;Enrique Alba","doi":"10.1162/evco_a_00314","DOIUrl":null,"url":null,"abstract":"In the traffic light scheduling problem, the evaluation of candidate solutions requires the simulation of a process under various (traffic) scenarios. Thus, good solutions should not only achieve good objective function values, but they must be robust (low variance) across all different scenarios. Previous work has shown that combining IRACE with evolutionary operators is effective for this task due to the power of evolutionary operators in numerical optimization. In this article, we further explore the hybridization of evolutionary operators and the elitist iterated racing of IRACE for the simulation–optimization of traffic light programs. We review previous works from the literature to find the evolutionary operators performing the best when facing this problem to propose new hybrid algorithms. We evaluate our approach over a realistic case study derived from the traffic network of Málaga (Spain) with 275 traffic lights that should be scheduled optimally. The experimental analysis reveals that the hybrid algorithm comprising IRACE plus differential evolution offers statistically better results than the other algorithms when the budget of simulations is low. In contrast, IRACE performs better than the hybrids for a high simulations budget, although the optimization time is much longer.","PeriodicalId":50470,"journal":{"name":"Evolutionary Computation","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10301819/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
In the traffic light scheduling problem, the evaluation of candidate solutions requires the simulation of a process under various (traffic) scenarios. Thus, good solutions should not only achieve good objective function values, but they must be robust (low variance) across all different scenarios. Previous work has shown that combining IRACE with evolutionary operators is effective for this task due to the power of evolutionary operators in numerical optimization. In this article, we further explore the hybridization of evolutionary operators and the elitist iterated racing of IRACE for the simulation–optimization of traffic light programs. We review previous works from the literature to find the evolutionary operators performing the best when facing this problem to propose new hybrid algorithms. We evaluate our approach over a realistic case study derived from the traffic network of Málaga (Spain) with 275 traffic lights that should be scheduled optimally. The experimental analysis reveals that the hybrid algorithm comprising IRACE plus differential evolution offers statistically better results than the other algorithms when the budget of simulations is low. In contrast, IRACE performs better than the hybrids for a high simulations budget, although the optimization time is much longer.
期刊介绍:
Evolutionary Computation is a leading journal in its field. It provides an international forum for facilitating and enhancing the exchange of information among researchers involved in both the theoretical and practical aspects of computational systems drawing their inspiration from nature, with particular emphasis on evolutionary models of computation such as genetic algorithms, evolutionary strategies, classifier systems, evolutionary programming, and genetic programming. It welcomes articles from related fields such as swarm intelligence (e.g. Ant Colony Optimization and Particle Swarm Optimization), and other nature-inspired computation paradigms (e.g. Artificial Immune Systems). As well as publishing articles describing theoretical and/or experimental work, the journal also welcomes application-focused papers describing breakthrough results in an application domain or methodological papers where the specificities of the real-world problem led to significant algorithmic improvements that could possibly be generalized to other areas.