Making waves: Why do we need ultra-permeable nanofiltration membranes for water treatment?

IF 7.2 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Zhe Yang, Chenyue Wu, Chuyang Y. Tang
{"title":"Making waves: Why do we need ultra-permeable nanofiltration membranes for water treatment?","authors":"Zhe Yang,&nbsp;Chenyue Wu,&nbsp;Chuyang Y. Tang","doi":"10.1016/j.wroa.2023.100172","DOIUrl":null,"url":null,"abstract":"<div><p>Over the last few decades, developing ultra-permeable nanofiltration (UPNF) membranes has been a focus research area to support NF-based water treatment. Nevertheless, there have been ongoing debates and doubts on the need for UPNF membranes. In this work, we share our perspectives on why UPNF membranes are desired for water treatment. We analyze the specific energy consumption (SEC) of NF processes under various application scenarios, which reveals the potential of UPNF membranes for reducing SEC by 1/3 to 2/3 depending on the prevailing transmembrane osmotic pressure difference. Furthermore, UPNF membranes could potentially enable new process opportunities. Vacuum-driven submerged NF-modules could be retrofitted to existing water/wastewater treatment plants, offering lower SEC and lower cost compared to conventional NF systems. Their use in submerged membrane bioreactors (NF-MBR) can recycle wastewater into high-quality permeate water, which enables energy-efficient water reuse in a single treatment step. The ability for retaining soluble organics may further extend the application of NF-MBR for anaerobic treatment of dilute municipal wastewater. Critical analysis of membrane development reveals huge rooms for UPNF membranes to attain improved selectivity and antifouling performance. Our perspective paper offers important insights for the future development of NF-based water treatment technology, which could potentially lead to a paradigm shift in this burgeoning field.</p></div>","PeriodicalId":52198,"journal":{"name":"Water Research X","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9969056/pdf/","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research X","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589914723000087","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 9

Abstract

Over the last few decades, developing ultra-permeable nanofiltration (UPNF) membranes has been a focus research area to support NF-based water treatment. Nevertheless, there have been ongoing debates and doubts on the need for UPNF membranes. In this work, we share our perspectives on why UPNF membranes are desired for water treatment. We analyze the specific energy consumption (SEC) of NF processes under various application scenarios, which reveals the potential of UPNF membranes for reducing SEC by 1/3 to 2/3 depending on the prevailing transmembrane osmotic pressure difference. Furthermore, UPNF membranes could potentially enable new process opportunities. Vacuum-driven submerged NF-modules could be retrofitted to existing water/wastewater treatment plants, offering lower SEC and lower cost compared to conventional NF systems. Their use in submerged membrane bioreactors (NF-MBR) can recycle wastewater into high-quality permeate water, which enables energy-efficient water reuse in a single treatment step. The ability for retaining soluble organics may further extend the application of NF-MBR for anaerobic treatment of dilute municipal wastewater. Critical analysis of membrane development reveals huge rooms for UPNF membranes to attain improved selectivity and antifouling performance. Our perspective paper offers important insights for the future development of NF-based water treatment technology, which could potentially lead to a paradigm shift in this burgeoning field.

Abstract Image

为什么我们需要超渗透纳滤膜进行水处理?
在过去的几十年里,开发超渗透纳滤膜一直是支持基于纳滤的水处理的重点研究领域。尽管如此,关于UPNF膜的必要性一直存在争论和疑虑。在这项工作中,我们分享了为什么UPNF膜需要用于水处理的观点。我们分析了不同应用场景下NF过程的比能耗(SEC),揭示了UPNF膜根据主要的跨膜渗透压差将SEC降低1/3至2/3的潜力。此外,UPNF膜可能带来新的工艺机会。真空驱动的浸没式NF模块可以改造为现有的水/废水处理厂,与传统的NF系统相比,提供更低的SEC和更低的成本。它们在浸没膜生物反应器(NF-MBR)中的使用可以将废水回收成高质量的渗透水,从而在单个处理步骤中实现高效用水。保留可溶性有机物的能力可以进一步扩展NF-MBR在稀释城市废水厌氧处理中的应用。对膜发展的关键分析表明,UPNF膜在提高选择性和防污性能方面有巨大的空间。我们的前瞻性论文为基于NF的水处理技术的未来发展提供了重要见解,这可能会导致这一新兴领域的范式转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Water Research X
Water Research X Environmental Science-Water Science and Technology
CiteScore
12.30
自引率
1.30%
发文量
19
期刊介绍: Water Research X is a sister journal of Water Research, which follows a Gold Open Access model. It focuses on publishing concise, letter-style research papers, visionary perspectives and editorials, as well as mini-reviews on emerging topics. The Journal invites contributions from researchers worldwide on various aspects of the science and technology related to the human impact on the water cycle, water quality, and its global management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信