Sparse Index Clones via the sorted 1 - Norm.

IF 1.5 4区 经济学 Q3 BUSINESS, FINANCE
Philipp J Kremer, Damian Brzyski, Małgorzata Bogdan, Sandra Paterlini
{"title":"Sparse Index Clones via the sorted <i>ℓ</i> <sub>1</sub> - Norm.","authors":"Philipp J Kremer,&nbsp;Damian Brzyski,&nbsp;Małgorzata Bogdan,&nbsp;Sandra Paterlini","doi":"10.1080/14697688.2021.1962539","DOIUrl":null,"url":null,"abstract":"<p><p>Index tracking and hedge fund replication aim at cloning the return time series properties of a given benchmark, by either using only a subset of its original constituents or by a set of risk factors. In this paper, we propose a model that relies on the <i>Sorted ℓ</i> <sub>1</sub> <i>Penalized Estimator</i>, called SLOPE, for index tracking and hedge fund replication. We show that SLOPE is capable of not only providing sparsity, but also to form groups among assets depending on their partial correlation with the index or the hedge fund return times series. The grouping structure can then be exploited to create individual investment strategies that allow building portfolios with a smaller number of active positions, but still comparable tracking properties. Considering equity index data and hedge fund returns, we discuss the real-world properties of SLOPE based approaches with respect to state-of-the art approaches.</p>","PeriodicalId":20747,"journal":{"name":"Quantitative Finance","volume":"22 2","pages":"349-366"},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9031478/pdf/nihms-1760168.pdf","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Finance","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/14697688.2021.1962539","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 11

Abstract

Index tracking and hedge fund replication aim at cloning the return time series properties of a given benchmark, by either using only a subset of its original constituents or by a set of risk factors. In this paper, we propose a model that relies on the Sorted ℓ 1 Penalized Estimator, called SLOPE, for index tracking and hedge fund replication. We show that SLOPE is capable of not only providing sparsity, but also to form groups among assets depending on their partial correlation with the index or the hedge fund return times series. The grouping structure can then be exploited to create individual investment strategies that allow building portfolios with a smaller number of active positions, but still comparable tracking properties. Considering equity index data and hedge fund returns, we discuss the real-world properties of SLOPE based approaches with respect to state-of-the art approaches.

Abstract Image

稀疏索引通过排序的1 -范数克隆。
指数跟踪和对冲基金复制的目的是克隆给定基准的回报时间序列属性,要么只使用原始成分的一个子集,要么使用一组风险因素。在本文中,我们提出了一个依赖于排序的1惩罚估计量(称为SLOPE)的模型,用于指数跟踪和对冲基金复制。我们表明,SLOPE不仅能够提供稀疏性,而且还能够根据资产与指数或对冲基金回报时间序列的部分相关性在资产之间形成组。然后可以利用分组结构来创建单独的投资策略,这些策略允许构建具有较少数量的活跃头寸的投资组合,但仍然具有可比较的跟踪属性。考虑到股票指数数据和对冲基金回报,我们讨论了基于斜率的方法相对于最先进方法的真实属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Quantitative Finance
Quantitative Finance 社会科学-数学跨学科应用
CiteScore
3.20
自引率
7.70%
发文量
102
审稿时长
4-8 weeks
期刊介绍: The frontiers of finance are shifting rapidly, driven in part by the increasing use of quantitative methods in the field. Quantitative Finance welcomes original research articles that reflect the dynamism of this area. The journal provides an interdisciplinary forum for presenting both theoretical and empirical approaches and offers rapid publication of original new work with high standards of quality. The readership is broad, embracing researchers and practitioners across a range of specialisms and within a variety of organizations. All articles should aim to be of interest to this broad readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信