Caitlyn C A Horsch, Pedro M Antunes, Cynthia M Kallenbach
{"title":"Arbuscular mycorrhizal fungal communities with contrasting life-history traits influence host nutrient acquisition.","authors":"Caitlyn C A Horsch, Pedro M Antunes, Cynthia M Kallenbach","doi":"10.1007/s00572-022-01098-x","DOIUrl":null,"url":null,"abstract":"<p><p>Life-history traits differ substantially among arbuscular mycorrhizal (AM) fungal families, potentially affecting hyphal nutrient acquisition efficiency, host nutrition, and thereby plant health and ecosystem function. Despite these implications, AM fungal community life-history strategies and community trait diversity effects on host nutrient acquisition are poorly understood. To address this knowledge gap, we grew sudangrass with AM fungal communities representing contrasting life-history traits and diversity: either (1) five species in the AM family Gigasporaceae, representing competitor traits, (2) five Glomerales species, representing ruderal traits, or (3) a mixed-trait community combining all ten AM fungal species. After 12 weeks, we measured above and belowground plant biomass and aboveground nutrient uptake and concentration. Overall, AM fungal colonization increased host nutrition, biomass, and foliar δ<sup>5</sup>nitrogen enrichment compared to the uncolonized control. Between the single-trait communities, the Glomeraceae community generally outperformed the Gigasporaceae community in host nutrition and plant growth, increasing plant phosphorus (P) uptake 1.5 times more than the Gigasporaceae community. We saw weak evidence for a synergistic effect of the mixed community, which was only higher for plant P concentration (1.26 times higher) and root colonization (1.26 times higher) compared to the single-trait communities. However, this higher P concentration did not translate to more P uptake or the highest plant biomass for the mixed community. These findings demonstrate that the AM symbiosis is affected by community differences at high taxonomic levels and provide insight into how different AM fungal communities and their associated traits affect host nutrition for fast-growing plant species.</p>","PeriodicalId":18965,"journal":{"name":"Mycorrhiza","volume":"33 1-2","pages":"1-14"},"PeriodicalIF":3.3000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mycorrhiza","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00572-022-01098-x","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Life-history traits differ substantially among arbuscular mycorrhizal (AM) fungal families, potentially affecting hyphal nutrient acquisition efficiency, host nutrition, and thereby plant health and ecosystem function. Despite these implications, AM fungal community life-history strategies and community trait diversity effects on host nutrient acquisition are poorly understood. To address this knowledge gap, we grew sudangrass with AM fungal communities representing contrasting life-history traits and diversity: either (1) five species in the AM family Gigasporaceae, representing competitor traits, (2) five Glomerales species, representing ruderal traits, or (3) a mixed-trait community combining all ten AM fungal species. After 12 weeks, we measured above and belowground plant biomass and aboveground nutrient uptake and concentration. Overall, AM fungal colonization increased host nutrition, biomass, and foliar δ5nitrogen enrichment compared to the uncolonized control. Between the single-trait communities, the Glomeraceae community generally outperformed the Gigasporaceae community in host nutrition and plant growth, increasing plant phosphorus (P) uptake 1.5 times more than the Gigasporaceae community. We saw weak evidence for a synergistic effect of the mixed community, which was only higher for plant P concentration (1.26 times higher) and root colonization (1.26 times higher) compared to the single-trait communities. However, this higher P concentration did not translate to more P uptake or the highest plant biomass for the mixed community. These findings demonstrate that the AM symbiosis is affected by community differences at high taxonomic levels and provide insight into how different AM fungal communities and their associated traits affect host nutrition for fast-growing plant species.
期刊介绍:
Mycorrhiza is an international journal devoted to research into mycorrhizas - the widest symbioses in nature, involving plants and a range of soil fungi world-wide. The scope of Mycorrhiza covers all aspects of research into mycorrhizas, including molecular biology of the plants and fungi, fungal systematics, development and structure of mycorrhizas, and effects on plant physiology, productivity, reproduction and disease resistance. The scope also includes interactions between mycorrhizal fungi and other soil organisms and effects of mycorrhizas on plant biodiversity and ecosystem structure.
Mycorrhiza contains original papers, short notes and review articles, along with commentaries and news items. It forms a platform for new concepts and discussions, and is a basis for a truly international forum of mycorrhizologists from all over the world.