{"title":"Rethinking 1D convolution for lightweight semantic segmentation.","authors":"Chunyu Zhang, Fang Xu, Chengdong Wu, Chenglong Xu","doi":"10.3389/fnbot.2023.1119231","DOIUrl":null,"url":null,"abstract":"<p><p>Lightweight semantic segmentation promotes the application of semantic segmentation in tiny devices. The existing lightweight semantic segmentation network (LSNet) has the problems of low precision and a large number of parameters. In response to the above problems, we designed a full 1D convolutional LSNet. The tremendous success of this network is attributed to the following three modules: 1D multi-layer space module (1D-MS), 1D multi-layer channel module (1D-MC), and flow alignment module (FA). The 1D-MS and the 1D-MC add global feature extraction operations based on the multi-layer perceptron (MLP) idea. This module uses 1D convolutional coding, which is more flexible than MLP. It increases the global information operation, improving features' coding ability. The FA module fuses high-level and low-level semantic information, which solves the problem of precision loss caused by the misalignment of features. We designed a 1D-mixer encoder based on the transformer structure. It performed fusion encoding of the feature space information extracted by the 1D-MS module and the channel information extracted by the 1D-MC module. 1D-mixer obtains high-quality encoded features with very few parameters, which is the key to the network's success. The attention pyramid with FA (AP-FA) uses an AP to decode features and adds a FA module to solve the problem of feature misalignment. Our network requires no pre-training and only needs a 1080Ti GPU for training. It achieved 72.6 mIoU and 95.6 FPS on the Cityscapes dataset and 70.5 mIoU and 122 FPS on the CamVid dataset. We ported the network trained on the ADE2K dataset to mobile devices, and the latency of 224 ms proves the application value of the network on mobile devices. The results on the three datasets prove that the network generalization ability we designed is powerful. Compared to state-of-the-art lightweight semantic segmentation algorithms, our designed network achieves the best balance between segmentation accuracy and parameters. The parameters of LSNet are only 0.62 M, which is currently the network with the highest segmentation accuracy within 1 M parameters.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"17 ","pages":"1119231"},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9947531/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2023.1119231","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Lightweight semantic segmentation promotes the application of semantic segmentation in tiny devices. The existing lightweight semantic segmentation network (LSNet) has the problems of low precision and a large number of parameters. In response to the above problems, we designed a full 1D convolutional LSNet. The tremendous success of this network is attributed to the following three modules: 1D multi-layer space module (1D-MS), 1D multi-layer channel module (1D-MC), and flow alignment module (FA). The 1D-MS and the 1D-MC add global feature extraction operations based on the multi-layer perceptron (MLP) idea. This module uses 1D convolutional coding, which is more flexible than MLP. It increases the global information operation, improving features' coding ability. The FA module fuses high-level and low-level semantic information, which solves the problem of precision loss caused by the misalignment of features. We designed a 1D-mixer encoder based on the transformer structure. It performed fusion encoding of the feature space information extracted by the 1D-MS module and the channel information extracted by the 1D-MC module. 1D-mixer obtains high-quality encoded features with very few parameters, which is the key to the network's success. The attention pyramid with FA (AP-FA) uses an AP to decode features and adds a FA module to solve the problem of feature misalignment. Our network requires no pre-training and only needs a 1080Ti GPU for training. It achieved 72.6 mIoU and 95.6 FPS on the Cityscapes dataset and 70.5 mIoU and 122 FPS on the CamVid dataset. We ported the network trained on the ADE2K dataset to mobile devices, and the latency of 224 ms proves the application value of the network on mobile devices. The results on the three datasets prove that the network generalization ability we designed is powerful. Compared to state-of-the-art lightweight semantic segmentation algorithms, our designed network achieves the best balance between segmentation accuracy and parameters. The parameters of LSNet are only 0.62 M, which is currently the network with the highest segmentation accuracy within 1 M parameters.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.