Bias correction for Cohen's d.

IF 1.9 4区 心理学 Q2 PSYCHOLOGY, MULTIDISCIPLINARY
Journal of General Psychology Pub Date : 2024-01-01 Epub Date: 2023-02-15 DOI:10.1080/00221309.2023.2172545
Xiaofeng Steven Liu
{"title":"Bias correction for Cohen's <i>d</i>.","authors":"Xiaofeng Steven Liu","doi":"10.1080/00221309.2023.2172545","DOIUrl":null,"url":null,"abstract":"<p><p>Cohen's <i>d</i> - a common effect size - contains a positive bias. The traditional bias correction, based on strict distribution assumption, does not always work for a small study with limited data. The non-parametric bootstrapping is not limited by distribution assumption and can be used to remove the bias in Cohen's <i>d</i>. A real example is included to illustrate the implementation of bootstrap bias estimation and the removal of sizable bias in Cohen's <i>d</i>.</p>","PeriodicalId":47581,"journal":{"name":"Journal of General Psychology","volume":" ","pages":"54-62"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of General Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1080/00221309.2023.2172545","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PSYCHOLOGY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Cohen's d - a common effect size - contains a positive bias. The traditional bias correction, based on strict distribution assumption, does not always work for a small study with limited data. The non-parametric bootstrapping is not limited by distribution assumption and can be used to remove the bias in Cohen's d. A real example is included to illustrate the implementation of bootstrap bias estimation and the removal of sizable bias in Cohen's d.

Cohen's d 的偏差校正。
Cohen's d 是一种常见的效应大小,其中包含正偏差。基于严格分布假设的传统偏倚校正并不总是适用于数据有限的小型研究。非参数引导法不受分布假设的限制,可用于消除 Cohen's d 中的偏差。本研究中的一个实际例子说明了引导法偏差估计的实施以及消除 Cohen's d 中的显著偏差的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of General Psychology
Journal of General Psychology PSYCHOLOGY, MULTIDISCIPLINARY-
CiteScore
5.20
自引率
4.00%
发文量
10
期刊介绍: The Journal of General Psychology publishes human and animal research reflecting various methodological approaches in all areas of experimental psychology. It covers traditional topics such as physiological and comparative psychology, sensation, perception, learning, and motivation, as well as more diverse topics such as cognition, memory, language, aging, and substance abuse, or mathematical, statistical, methodological, and other theoretical investigations. The journal especially features studies that establish functional relationships, involve a series of integrated experiments, or contribute to the development of new theoretical insights or practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信