{"title":"GPC3 Promotes Lung Squamous Cell Carcinoma Progression and HLA-A2-Restricted GPC3 Antigenic Peptide-Modified Dendritic Cell-Induced Cytotoxic T Lymphocytes to Kill Lung Squamous Cell Carcinoma Cells.","authors":"Jing Ning, Jianqiao Ding, Shu Wang, Youhong Jiang, Daqing Wang, Shenyi Jiang","doi":"10.1155/2023/5532617","DOIUrl":null,"url":null,"abstract":"<p><p>Lung squamous cell carcinoma (LUSC) is associated with poor clinical prognosis and lacks available targeted agents. GPC3 is upregulated in LUSC. Our study aimed to explore the roles of GPC3 in LUSC and the antitumor effects of HLA-A2-restricted GPC3 antigenic peptide-sensitized dendritic cell (DC)-induced cytotoxic T lymphocytes (CTLs) on LUSC. LUSC cells with GPC3 knockdown and overexpression were built using lentivirus packaging, and cell viability, clone formation, apoptosis, cycle, migration, and invasion were determined. Western blotting was used to detect the expression of cell cycle-related proteins and PI3K-AKT pathway-associated proteins. Subsequently, HLA-A2-restricted GPC3 antigenic peptides were predicted and synthesized by bioinformatic databases, and DCs were induced and cultured <i>in vitro</i>. Finally, HLA-A2-restricted GPC3 antigenic peptide-modified DCs were co-cultured with T cells to generate specific CTLs, and the killing effects of different CTLs on LUSC cells were studied. A series of cell function experiments showed that GPC3 overexpression promoted the proliferation, migration, and invasion of LUSC cells, inhibited their apoptosis, increased the number of cells in S phase, and reduced the cells in G2/M phase. GPC3 knockdown downregulated cyclin A, c-Myc, and PI3K, upregulated E2F1, and decreased the pAKT/AKT level. Three HLA-A2-restricted GPC3 antigenic peptides were synthesized, with GPC3<sub>522-530</sub> FLAELAYDL and GPC3<sub>102-110</sub> FLIIQNAAV antigenic peptide-modified DCs inducing CTL production, and exhibiting strong targeted killing ability in LUSC cells at 80 : 1 multiplicity of infection. GPC3 may advance the onset and progression of LUSC, and GPC3<sub>522-530</sub> FLAELAYDL and GPC3<sub>102-110</sub> FLIIQNAAV antigenic peptide-loaded DC-induced CTLs have a superior killing ability against LUSC cells.</p>","PeriodicalId":15952,"journal":{"name":"Journal of Immunology Research","volume":"2023 ","pages":"5532617"},"PeriodicalIF":3.5000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10643027/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Immunology Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1155/2023/5532617","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Lung squamous cell carcinoma (LUSC) is associated with poor clinical prognosis and lacks available targeted agents. GPC3 is upregulated in LUSC. Our study aimed to explore the roles of GPC3 in LUSC and the antitumor effects of HLA-A2-restricted GPC3 antigenic peptide-sensitized dendritic cell (DC)-induced cytotoxic T lymphocytes (CTLs) on LUSC. LUSC cells with GPC3 knockdown and overexpression were built using lentivirus packaging, and cell viability, clone formation, apoptosis, cycle, migration, and invasion were determined. Western blotting was used to detect the expression of cell cycle-related proteins and PI3K-AKT pathway-associated proteins. Subsequently, HLA-A2-restricted GPC3 antigenic peptides were predicted and synthesized by bioinformatic databases, and DCs were induced and cultured in vitro. Finally, HLA-A2-restricted GPC3 antigenic peptide-modified DCs were co-cultured with T cells to generate specific CTLs, and the killing effects of different CTLs on LUSC cells were studied. A series of cell function experiments showed that GPC3 overexpression promoted the proliferation, migration, and invasion of LUSC cells, inhibited their apoptosis, increased the number of cells in S phase, and reduced the cells in G2/M phase. GPC3 knockdown downregulated cyclin A, c-Myc, and PI3K, upregulated E2F1, and decreased the pAKT/AKT level. Three HLA-A2-restricted GPC3 antigenic peptides were synthesized, with GPC3522-530 FLAELAYDL and GPC3102-110 FLIIQNAAV antigenic peptide-modified DCs inducing CTL production, and exhibiting strong targeted killing ability in LUSC cells at 80 : 1 multiplicity of infection. GPC3 may advance the onset and progression of LUSC, and GPC3522-530 FLAELAYDL and GPC3102-110 FLIIQNAAV antigenic peptide-loaded DC-induced CTLs have a superior killing ability against LUSC cells.
期刊介绍:
Journal of Immunology Research is a peer-reviewed, Open Access journal that provides a platform for scientists and clinicians working in different areas of immunology and therapy. The journal publishes research articles, review articles, as well as clinical studies related to classical immunology, molecular immunology, clinical immunology, cancer immunology, transplantation immunology, immune pathology, immunodeficiency, autoimmune diseases, immune disorders, and immunotherapy.