Monte Carlo model for ion mobility and diffusion for characteristic electric fields in nanodosimetry

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Irina Kempf , Uwe Schneider
{"title":"Monte Carlo model for ion mobility and diffusion for characteristic electric fields in nanodosimetry","authors":"Irina Kempf ,&nbsp;Uwe Schneider","doi":"10.1016/j.zemedi.2022.12.006","DOIUrl":null,"url":null,"abstract":"<div><p>The quantification of the effects of space radiation for manned spaceflight can be approximated by nanodosimetric measurements. For the development of nanodosimetric detectors, a Monte Carlo model for ion mobility and diffusion for characteristic electric fields is presented.</p><p>This model can be used to describe the interactions of ions in their parent gas based solely on commonly known input parameters, such as the ionization potential, kinetic diameter, molar mass, and polarizability of the gas. A model for approximating the resonant charge exchange cross section has been proposed, requiring only the ionization energy and mass of the parent gas as input parameters. The method proposed in this work was tested against experimental drift velocity data for a wide range of gases (helium, neon, nitrogen, argon, krypton, carbon monoxide, carbon dioxide, oxygen, propane). The transverse diffusion coefficients were compared to experimental values for helium, nitrogen, neon, argon, and propane gas.</p><p>With the Monte Carlo code and resonant charge exchange cross section approximation model presented in this work, it is now possible to calculate an estimate of the drift velocities, transverse diffusion, and thus the ion mobility of ions in their parent gas. This is essential for further nanodosimetric detector development, as those parameters are often not well known for the gas mixtures used in nanodosimetry.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0939388922001398/pdfft?md5=da9a5e516b9b172c1f85166490be2157&pid=1-s2.0-S0939388922001398-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0939388922001398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

The quantification of the effects of space radiation for manned spaceflight can be approximated by nanodosimetric measurements. For the development of nanodosimetric detectors, a Monte Carlo model for ion mobility and diffusion for characteristic electric fields is presented.

This model can be used to describe the interactions of ions in their parent gas based solely on commonly known input parameters, such as the ionization potential, kinetic diameter, molar mass, and polarizability of the gas. A model for approximating the resonant charge exchange cross section has been proposed, requiring only the ionization energy and mass of the parent gas as input parameters. The method proposed in this work was tested against experimental drift velocity data for a wide range of gases (helium, neon, nitrogen, argon, krypton, carbon monoxide, carbon dioxide, oxygen, propane). The transverse diffusion coefficients were compared to experimental values for helium, nitrogen, neon, argon, and propane gas.

With the Monte Carlo code and resonant charge exchange cross section approximation model presented in this work, it is now possible to calculate an estimate of the drift velocities, transverse diffusion, and thus the ion mobility of ions in their parent gas. This is essential for further nanodosimetric detector development, as those parameters are often not well known for the gas mixtures used in nanodosimetry.

纳米模拟测量中特征电场的离子迁移率和扩散的蒙特卡洛模型。
空间辐射对载人航天影响的量化可以通过纳米计量测量来近似实现。为开发纳米计量探测器,介绍了一种针对特征电场的离子迁移率和扩散的蒙特卡罗模型。该模型可用于描述离子在其母体气体中的相互作用,只需基于通常已知的输入参数,如气体的电离势、动力学直径、摩尔质量和极化性。我们提出了一个近似共振电荷交换截面的模型,只需将母体气体的电离能和质量作为输入参数。这项工作中提出的方法针对多种气体(氦气、氖气、氮气、氩气、氪气、一氧化碳、二氧化碳、氧气、丙烷)的实验漂移速度数据进行了测试。横向扩散系数与氦气、氮气、氖气、氩气和丙烷气体的实验值进行了比较。利用本研究中介绍的蒙特卡罗代码和共振电荷交换截面近似模型,现在可以计算出漂移速度、横向扩散的估计值,从而计算出离子在其母体气体中的离子迁移率。这对于进一步开发纳米定量检测器至关重要,因为纳米定量检测中使用的混合气体中的这些参数通常并不为人所知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信