Oxidative versus reductive stress: a delicate balance for sperm integrity.

IF 2.1 4区 医学 Q3 ANDROLOGY
Niloofar Sadeghi, Guylain Boissonneault, Marziyeh Tavalaee, Mohammad Hossein Nasr-Esfahani
{"title":"Oxidative versus reductive stress: a delicate balance for sperm integrity.","authors":"Niloofar Sadeghi,&nbsp;Guylain Boissonneault,&nbsp;Marziyeh Tavalaee,&nbsp;Mohammad Hossein Nasr-Esfahani","doi":"10.1080/19396368.2022.2119181","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the long-standing notion of \"oxidative stress,\" as the main mediator of many diseases including male infertility induced by increased reactive oxygen species (ROS), recent evidence suggests that ROS levels are also increased by \"reductive stress,\" due to over-accumulation of reductants. Damaging mechanisms, like guanidine oxidation followed by DNA fragmentation, could be observed following reductive stress. Excessive accumulation of the reductants may arise from excess dietary supplementation over driving the one-carbon cycle and transsulfuration pathway, overproduction of NADPH through the pentose phosphate pathway (PPP), elevated levels of GSH leading to impaired mitochondrial oxidation, or as a result NADH accumulation. In addition, lower availability of oxidized reductants like NAD<sup>+</sup>, oxidized glutathione (GSSG), and oxidized thioredoxins (Trx-S2) induce electron leakage leading to the formation of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>). In addition, a lower level of NAD<sup>+</sup> impairs poly (ADP-ribose) polymerase (PARP)-regulated DNA repair essential for proper chromatin integrity of sperm. Because of the limited studies regarding the possible involvement of reductive stress, antioxidant therapy remains a central approach in the treatment of male infertility. This review put forward the concept of reductive stress and highlights the potential role played by reductive vs oxidative stress at pre-and post-testicular levels and considering dietary supplementation.</p>","PeriodicalId":22184,"journal":{"name":"Systems Biology in Reproductive Medicine","volume":"69 1","pages":"20-31"},"PeriodicalIF":2.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems Biology in Reproductive Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19396368.2022.2119181","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ANDROLOGY","Score":null,"Total":0}
引用次数: 8

Abstract

Despite the long-standing notion of "oxidative stress," as the main mediator of many diseases including male infertility induced by increased reactive oxygen species (ROS), recent evidence suggests that ROS levels are also increased by "reductive stress," due to over-accumulation of reductants. Damaging mechanisms, like guanidine oxidation followed by DNA fragmentation, could be observed following reductive stress. Excessive accumulation of the reductants may arise from excess dietary supplementation over driving the one-carbon cycle and transsulfuration pathway, overproduction of NADPH through the pentose phosphate pathway (PPP), elevated levels of GSH leading to impaired mitochondrial oxidation, or as a result NADH accumulation. In addition, lower availability of oxidized reductants like NAD+, oxidized glutathione (GSSG), and oxidized thioredoxins (Trx-S2) induce electron leakage leading to the formation of hydrogen peroxide (H2O2). In addition, a lower level of NAD+ impairs poly (ADP-ribose) polymerase (PARP)-regulated DNA repair essential for proper chromatin integrity of sperm. Because of the limited studies regarding the possible involvement of reductive stress, antioxidant therapy remains a central approach in the treatment of male infertility. This review put forward the concept of reductive stress and highlights the potential role played by reductive vs oxidative stress at pre-and post-testicular levels and considering dietary supplementation.

氧化应激与还原应激:精子完整性的微妙平衡。
尽管“氧化应激”是许多疾病的主要媒介,包括由活性氧(ROS)增加引起的男性不育症,但最近的证据表明,由于还原剂的过度积累,“还原应激”也会增加ROS水平。损伤机制,如胍氧化随后的DNA断裂,可以观察到还原应激。还原剂的过度积累可能是由于过量的膳食补充超过了驱动单碳循环和转硫途径,通过戊糖磷酸途径(PPP)过量产生NADPH, GSH水平升高导致线粒体氧化受损,或NADH积累的结果。此外,NAD+、氧化谷胱甘肽(GSSG)和氧化硫氧还毒素(Trx-S2)等氧化还原剂的可用性较低,会导致电子泄漏,从而形成过氧化氢(H2O2)。此外,较低水平的NAD+会损害poly (adp -核糖)聚合酶(PARP)调节的DNA修复,这对精子的染色质完整性至关重要。由于关于还原性应激可能涉及的研究有限,抗氧化治疗仍然是治疗男性不育症的主要方法。本文提出了还原性应激的概念,强调了睾丸前和睾丸后水平的还原性应激和氧化应激的潜在作用,并考虑了膳食补充。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
4.20%
发文量
27
审稿时长
>12 weeks
期刊介绍: Systems Biology in Reproductive Medicine, SBiRM, publishes Research Articles, Communications, Applications Notes that include protocols a Clinical Corner that includes case reports, Review Articles and Hypotheses and Letters to the Editor on human and animal reproduction. The journal will highlight the use of systems approaches including genomic, cellular, proteomic, metabolomic, bioinformatic, molecular, and biochemical, to address fundamental questions in reproductive biology, reproductive medicine, and translational research. The journal publishes research involving human and animal gametes, stem cells, developmental biology and toxicology, and clinical care in reproductive medicine. Specific areas of interest to the journal include: male factor infertility and germ cell biology, reproductive technologies (gamete micro-manipulation and cryopreservation, in vitro fertilization/embryo transfer (IVF/ET) and contraception. Research that is directed towards developing new or enhanced technologies for clinical medicine or scientific research in reproduction is of significant interest to the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信