Xenogeneic transplantation of mitochondria induces muscle regeneration in an in vivo rat model of dexamethasone-induced atrophy.

IF 1.8 3区 生物学 Q4 CELL BIOLOGY
Mi Jin Kim, Ji Min Lee, Kyunghoon Min, Yong-Soo Choi
{"title":"Xenogeneic transplantation of mitochondria induces muscle regeneration in an in vivo rat model of dexamethasone-induced atrophy.","authors":"Mi Jin Kim, Ji Min Lee, Kyunghoon Min, Yong-Soo Choi","doi":"10.1007/s10974-023-09643-7","DOIUrl":null,"url":null,"abstract":"<p><p>Muscle atrophy significantly impairs health and quality of life; however, there is still no cure. Recently, the possibility of regeneration in muscle atrophic cells was suggested through mitochondrial transfer. Therefore, we attempted to prove the efficacy of mitochondrial transplantation in animal models. To this end, we prepared intact mitochondria from umbilical cord-derived mesenchymal stem cells maintaining their membrane potential. To examine the efficacy of mitochondrial transplantation on muscle regeneration, we measured muscle mass, cross-sectional area of muscle fiber, and changes in muscle-specific protein. In addition, changes in the signaling mechanisms related to muscle atrophy were evaluated. As a result, in mitochondrial transplantation, the muscle mass increased by 1.5-fold and the lactate concentration decreased by 2.5-fold at 1 week in dexamethasone-induced atrophic muscles. In addition, a 2.3-fold increase in the expression of desmin protein, a muscle regeneration marker, showed a significant recovery in MT 5 µg group. Importantly, the muscle-specific ubiquitin E3-ligases MAFbx and MuRF-1 were significantly decreased through AMPK-mediated Akt-FoxO signaling pathway by mitochondrial transplantation compared with the saline group, reaching a level similar to that in the control. Based on these results, mitochondrial transplantation may have therapeutic applications in the treatment of atrophic muscle disorders.</p>","PeriodicalId":16422,"journal":{"name":"Journal of Muscle Research and Cell Motility","volume":" ","pages":"53-68"},"PeriodicalIF":1.8000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Muscle Research and Cell Motility","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10974-023-09643-7","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/18 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Muscle atrophy significantly impairs health and quality of life; however, there is still no cure. Recently, the possibility of regeneration in muscle atrophic cells was suggested through mitochondrial transfer. Therefore, we attempted to prove the efficacy of mitochondrial transplantation in animal models. To this end, we prepared intact mitochondria from umbilical cord-derived mesenchymal stem cells maintaining their membrane potential. To examine the efficacy of mitochondrial transplantation on muscle regeneration, we measured muscle mass, cross-sectional area of muscle fiber, and changes in muscle-specific protein. In addition, changes in the signaling mechanisms related to muscle atrophy were evaluated. As a result, in mitochondrial transplantation, the muscle mass increased by 1.5-fold and the lactate concentration decreased by 2.5-fold at 1 week in dexamethasone-induced atrophic muscles. In addition, a 2.3-fold increase in the expression of desmin protein, a muscle regeneration marker, showed a significant recovery in MT 5 µg group. Importantly, the muscle-specific ubiquitin E3-ligases MAFbx and MuRF-1 were significantly decreased through AMPK-mediated Akt-FoxO signaling pathway by mitochondrial transplantation compared with the saline group, reaching a level similar to that in the control. Based on these results, mitochondrial transplantation may have therapeutic applications in the treatment of atrophic muscle disorders.

Abstract Image

在地塞米松诱导的萎缩大鼠体内模型中,异种移植线粒体可诱导肌肉再生。
肌肉萎缩严重损害了人们的健康和生活质量,但目前仍无治愈方法。最近,有人提出了通过线粒体移植实现肌肉萎缩细胞再生的可能性。因此,我们尝试在动物模型中证明线粒体移植的有效性。为此,我们从保持膜电位的脐带间充质干细胞中制备了完整的线粒体。为了研究线粒体移植对肌肉再生的功效,我们测量了肌肉质量、肌纤维横截面积和肌肉特异性蛋白的变化。此外,我们还评估了与肌肉萎缩相关的信号传导机制的变化。结果显示,线粒体移植一周后,地塞米松诱导的萎缩肌肉的肌肉质量增加了1.5倍,乳酸浓度降低了2.5倍。此外,肌肉再生标志物 desmin 蛋白的表达量增加了 2.3 倍,这表明 MT 5 µg 组的肌肉得到了显著恢复。重要的是,与生理盐水组相比,通过 AMPK 介导的 Akt-FoxO 信号通路,肌肉特异性泛素 E3 连接酶 MAFbx 和 MuRF-1 在线粒体移植后显著下降,达到与对照组相似的水平。基于这些结果,线粒体移植在萎缩性肌肉疾病的治疗中可能具有一定的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: The Journal of Muscle Research and Cell Motility has as its main aim the publication of original research which bears on either the excitation and contraction of muscle, the analysis of any one of the processes involved therein, the processes underlying contractility and motility of animal and plant cells, the toxicology and pharmacology related to contractility, or the formation, dynamics and turnover of contractile structures in muscle and non-muscle cells. Studies describing the impact of pathogenic mutations in genes encoding components of contractile structures in humans or animals are welcome, provided they offer mechanistic insight into the disease process or the underlying gene function. The policy of the Journal is to encourage any form of novel practical study whatever its specialist interest, as long as it falls within this broad field. Theoretical essays are welcome provided that they are concise and suggest practical ways in which they may be tested. Manuscripts reporting new mutations in known disease genes without validation and mechanistic insight will not be considered. It is the policy of the journal that cells lines, hybridomas and DNA clones should be made available by the developers to any qualified investigator. Submission of a manuscript for publication constitutes an agreement of the authors to abide by this principle.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信