Non-hyperaemic assessment of coronary ischaemia: application of machine learning techniques.

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS
James N Cameron, Andrea Comella, Nigel Sutherland, Adam J Brown, Thanh G Phan
{"title":"Non-hyperaemic assessment of coronary ischaemia: application of machine learning techniques.","authors":"James N Cameron,&nbsp;Andrea Comella,&nbsp;Nigel Sutherland,&nbsp;Adam J Brown,&nbsp;Thanh G Phan","doi":"10.1093/ehjdh/ztac050","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Hyperaemic and non-hyperaemic pressure ratios (NHPR) are routinely used to identify significant coronary lesions. Machine learning (ML) techniques may help better understand these indices and guide future practice. This study assessed the ability of a purpose-built ML algorithm to classify coronary ischaemia during non-hyperaemia compared with the existing gold-standard technique (fractional flow reserve, FFR). Further, it investigated whether ML could identify components of coronary and aortic pressure cycles indicative of ischaemia.</p><p><strong>Methods and results: </strong>Seventy-seven coronary vessel lesions (39 FFR defined ischaemia, 53 patients) with proximal and distal non-hyperaemic pressure waveforms and FFR values were assessed using supervised and unsupervised learning techniques in combination with principal component analysis (PCA). Fractional flow reserve measurements were obtained from the right coronary artery (13), left anterior descending (46), left circumflex (11), left main (1), obtuse marginal (2), and diagonal (4). The most accurate supervised learning classification utilized whole-cycle aortic with diastolic distal blood pressure waveforms, yielding a classification accuracy of 86.9% (sensitivity 86.8%, specificity 87.2%, positive predictive value 86.8%, negative predictive value 87.2%). Principal component analysis showed subtle variations in coronary pressures at the start of diastole have significant relation to ischaemia, and whole-cycle aortic pressure data are important for determining ischaemia.</p><p><strong>Conclusions: </strong>Our ML algorithm classifies significant coronary lesions with accuracy similar to previous studies comparing time-domain NHPRs with FFR. Further, it has identified characteristics of pressure waveforms that relate to function. These results provide an application of ML to ischaemia requiring only standard data from non-hyperaemic pressure measurements.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"3 4","pages":"505-515"},"PeriodicalIF":3.9000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/2b/41/ztac050.PMC9779890.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztac050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Hyperaemic and non-hyperaemic pressure ratios (NHPR) are routinely used to identify significant coronary lesions. Machine learning (ML) techniques may help better understand these indices and guide future practice. This study assessed the ability of a purpose-built ML algorithm to classify coronary ischaemia during non-hyperaemia compared with the existing gold-standard technique (fractional flow reserve, FFR). Further, it investigated whether ML could identify components of coronary and aortic pressure cycles indicative of ischaemia.

Methods and results: Seventy-seven coronary vessel lesions (39 FFR defined ischaemia, 53 patients) with proximal and distal non-hyperaemic pressure waveforms and FFR values were assessed using supervised and unsupervised learning techniques in combination with principal component analysis (PCA). Fractional flow reserve measurements were obtained from the right coronary artery (13), left anterior descending (46), left circumflex (11), left main (1), obtuse marginal (2), and diagonal (4). The most accurate supervised learning classification utilized whole-cycle aortic with diastolic distal blood pressure waveforms, yielding a classification accuracy of 86.9% (sensitivity 86.8%, specificity 87.2%, positive predictive value 86.8%, negative predictive value 87.2%). Principal component analysis showed subtle variations in coronary pressures at the start of diastole have significant relation to ischaemia, and whole-cycle aortic pressure data are important for determining ischaemia.

Conclusions: Our ML algorithm classifies significant coronary lesions with accuracy similar to previous studies comparing time-domain NHPRs with FFR. Further, it has identified characteristics of pressure waveforms that relate to function. These results provide an application of ML to ischaemia requiring only standard data from non-hyperaemic pressure measurements.

Abstract Image

Abstract Image

Abstract Image

冠状动脉缺血的非充血评估:机器学习技术的应用。
目的:充血和非充血压比(NHPR)通常用于识别重要的冠状动脉病变。机器学习(ML)技术可能有助于更好地理解这些指标,并指导未来的实践。本研究评估了专用ML算法在非充血期间对冠状动脉缺血进行分类的能力,并与现有的金标准技术(分数血流储备,FFR)进行了比较。此外,它还研究了ML是否可以识别指示缺血的冠状动脉和主动脉压力周期的成分。方法和结果:使用监督和非监督学习技术结合主成分分析(PCA)评估77例冠状动脉病变(39例FFR定义为缺血,53例患者)近端和远端非充血压力波形和FFR值。从右冠状动脉(13)、左前降支(46)、左旋支(11)、左主干(1)、斜主干(2)和斜主干(4)获得了血流储备的分数。最准确的监督学习分类利用了全周期主动脉和舒张期远端血压波形,分类准确率为86.9%(敏感性86.8%,特异性87.2%,阳性预测值86.8%,阴性预测值87.2%)。主成分分析显示,舒张开始时冠状动脉压力的细微变化与缺血有显著关系,全周期主动脉压力数据对确定缺血很重要。结论:我们的ML算法对重要的冠状动脉病变进行分类,其准确性与之前比较时域nhpr和FFR的研究相似。此外,它还确定了与功能相关的压力波形的特征。这些结果提供了ML在缺血中的应用,只需要来自非充血压力测量的标准数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信