Preparation and characterisation of self-emulsifying drug delivery system (SEDDS) for enhancing oral bioavailability of metformin hydrochloride using hydrophobic ion pairing complexation.

IF 3 4区 医学 Q2 CHEMISTRY, APPLIED
Seyedeh Nika Rezvanjou, Mohammad Reza Niavand, Omid Heydari Shayesteh, Ehsan Mehrani Yeganeh, Davood Ahmadi Moghadam, Katayoun Derakhshandeh, Reza Mahjub
{"title":"Preparation and characterisation of self-emulsifying drug delivery system (SEDDS) for enhancing oral bioavailability of metformin hydrochloride using hydrophobic ion pairing complexation.","authors":"Seyedeh Nika Rezvanjou,&nbsp;Mohammad Reza Niavand,&nbsp;Omid Heydari Shayesteh,&nbsp;Ehsan Mehrani Yeganeh,&nbsp;Davood Ahmadi Moghadam,&nbsp;Katayoun Derakhshandeh,&nbsp;Reza Mahjub","doi":"10.1080/02652048.2023.2170488","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The aim of this study was preparation of a self-emulsifying drug delivery system (SEEDS) containing metformin hydrochloride.</p><p><strong>Methods: </strong>Hydrophobic ion paired complexes were prepared by electrostatic interaction between metformin and sodium lauryl sulphate (SLS). The nanodroplets were optimised using two-level full factorial methodology and their morphology were examined. <i>In vitro</i> release of metformin from SEDDS was evaluated in simulated gastric and intestinal fluids. Finally, the ex<i>-vivo</i> efficacy of the optimised formulation in enhancing the intestinal permeability of metformin was evaluated using non-everted intestinal sac.</p><p><strong>Results: </strong>The data revealed that in weight ratio 1:4(metformin: SLS), the highest recovery was achieved. The physico-chemical properties of the optimised nano-droplets including size, polydispersity index (PdI), zeta potential, and loading efficiency (%) were 192.33 ± 9.9 nm, 0.275 ± 0.051; -1.52 mV, and 93.75 ± 0.77% (w/w), respectively.</p><p><strong>Conclusions: </strong>The data obtained from the intestinal transport study demonstrated that SEDDS can significantly enhance the oral permeability of the compound.</p>","PeriodicalId":16391,"journal":{"name":"Journal of microencapsulation","volume":"40 1","pages":"53-66"},"PeriodicalIF":3.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microencapsulation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/02652048.2023.2170488","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: The aim of this study was preparation of a self-emulsifying drug delivery system (SEEDS) containing metformin hydrochloride.

Methods: Hydrophobic ion paired complexes were prepared by electrostatic interaction between metformin and sodium lauryl sulphate (SLS). The nanodroplets were optimised using two-level full factorial methodology and their morphology were examined. In vitro release of metformin from SEDDS was evaluated in simulated gastric and intestinal fluids. Finally, the ex-vivo efficacy of the optimised formulation in enhancing the intestinal permeability of metformin was evaluated using non-everted intestinal sac.

Results: The data revealed that in weight ratio 1:4(metformin: SLS), the highest recovery was achieved. The physico-chemical properties of the optimised nano-droplets including size, polydispersity index (PdI), zeta potential, and loading efficiency (%) were 192.33 ± 9.9 nm, 0.275 ± 0.051; -1.52 mV, and 93.75 ± 0.77% (w/w), respectively.

Conclusions: The data obtained from the intestinal transport study demonstrated that SEDDS can significantly enhance the oral permeability of the compound.

疏水离子对络合提高盐酸二甲双胍口服生物利用度的自乳化给药系统(SEDDS)的制备与表征。
目的:制备盐酸二甲双胍自乳化给药系统。方法:二甲双胍与十二烷基硫酸钠(SLS)静电相互作用制备疏水离子配对配合物。采用两水平全因子方法对纳米液滴进行优化,并对其形态进行了检测。在模拟胃液和肠液中评估了SEDDS中二甲双胍的体外释放。最后,采用非外翻肠囊评价优化后的配方提高二甲双胍肠通透性的体外疗效。结果:二甲双胍:SLS质量比为1:4时,回收率最高。优化后的纳米液滴的理化性质包括粒径、PdI、zeta电位和负载效率(%)分别为192.33±9.9 nm、0.275±0.051 nm;分别为-1.52 mV和93.75±0.77% (w/w)。结论:肠道转运研究数据表明,SEDDS可显著提高化合物的口服通透性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of microencapsulation
Journal of microencapsulation 工程技术-工程:化工
CiteScore
6.30
自引率
2.60%
发文量
39
审稿时长
3 months
期刊介绍: The Journal of Microencapsulation is a well-established, peer-reviewed journal dedicated to the publication of original research findings related to the preparation, properties and uses of individually encapsulated novel small particles, as well as significant improvements to tried-and-tested techniques relevant to micro and nano particles and their use in a wide variety of industrial, engineering, pharmaceutical, biotechnology and research applications. Its scope extends beyond conventional microcapsules to all other small particulate systems such as self assembling structures that involve preparative manipulation. The journal covers: Chemistry of encapsulation materials Physics of release through the capsule wall and/or desorption from carrier Techniques of preparation, content and storage Many uses to which microcapsules are put.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信