Miriam Heynckes , Agustin Lage-Castellanos , Peter De Weerd , Elia Formisano , Federico De Martino
{"title":"Layer-specific correlates of detected and undetected auditory targets during attention","authors":"Miriam Heynckes , Agustin Lage-Castellanos , Peter De Weerd , Elia Formisano , Federico De Martino","doi":"10.1016/j.crneur.2023.100075","DOIUrl":null,"url":null,"abstract":"<div><p>In everyday life, the processing of acoustic information allows us to react to subtle changes in the auditory scene. Yet even when closely attending to sounds in the context of a task, we occasionally miss task-relevant features. The neural computations that underlie our ability to detect behavioral relevant sound changes are thought to be grounded in both feedforward and feedback processes within the auditory hierarchy. Here, we assessed the role of feedforward and feedback contributions in primary and non-primary auditory areas during behavioral detection of target sounds using submillimeter spatial resolution functional magnetic resonance imaging (fMRI) at high-fields (7 T) in humans. We demonstrate that the successful detection of subtle temporal shifts in target sounds leads to a selective increase of activation in superficial layers of primary auditory cortex (PAC). These results indicate that feedback signals reaching as far back as PAC may be relevant to the detection of targets in the auditory scene.</p></div>","PeriodicalId":72752,"journal":{"name":"Current research in neurobiology","volume":"4 ","pages":"Article 100075"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/9a/ba/main.PMC9900365.pdf","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current research in neurobiology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665945X23000037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In everyday life, the processing of acoustic information allows us to react to subtle changes in the auditory scene. Yet even when closely attending to sounds in the context of a task, we occasionally miss task-relevant features. The neural computations that underlie our ability to detect behavioral relevant sound changes are thought to be grounded in both feedforward and feedback processes within the auditory hierarchy. Here, we assessed the role of feedforward and feedback contributions in primary and non-primary auditory areas during behavioral detection of target sounds using submillimeter spatial resolution functional magnetic resonance imaging (fMRI) at high-fields (7 T) in humans. We demonstrate that the successful detection of subtle temporal shifts in target sounds leads to a selective increase of activation in superficial layers of primary auditory cortex (PAC). These results indicate that feedback signals reaching as far back as PAC may be relevant to the detection of targets in the auditory scene.