Endogenous opioid systems alterations in pain and opioid use disorder.

IF 3.1 4区 医学 Q2 NEUROSCIENCES
Frontiers in Systems Neuroscience Pub Date : 2022-10-19 eCollection Date: 2022-01-01 DOI:10.3389/fnsys.2022.1014768
Jessica A Higginbotham, Tamara Markovic, Nicolas Massaly, Jose A Morón
{"title":"Endogenous opioid systems alterations in pain and opioid use disorder.","authors":"Jessica A Higginbotham, Tamara Markovic, Nicolas Massaly, Jose A Morón","doi":"10.3389/fnsys.2022.1014768","DOIUrl":null,"url":null,"abstract":"<p><p>Decades of research advances have established a central role for endogenous opioid systems in regulating reward processing, mood, motivation, learning and memory, gastrointestinal function, and pain relief. Endogenous opioid systems are present ubiquitously throughout the central and peripheral nervous system. They are composed of four families, namely the μ (MOPR), κ (KOPR), δ (DOPR), and nociceptin/orphanin FQ (NOPR) opioid receptors systems. These receptors signal through the action of their endogenous opioid peptides β-endorphins, dynorphins, enkephalins, and nociceptins, respectfully, to maintain homeostasis under normal physiological states. Due to their prominent role in pain regulation, exogenous opioids-primarily targeting the MOPR, have been historically used in medicine as analgesics, but their ability to produce euphoric effects also present high risks for abuse. The ability of pain and opioid use to perturb endogenous opioid system function, particularly within the central nervous system, may increase the likelihood of developing opioid use disorder (OUD). Today, the opioid crisis represents a major social, economic, and public health concern. In this review, we summarize the current state of the literature on the function, expression, pharmacology, and regulation of endogenous opioid systems in pain. Additionally, we discuss the adaptations in the endogenous opioid systems upon use of exogenous opioids which contribute to the development of OUD. Finally, we describe the intricate relationship between pain, endogenous opioid systems, and the proclivity for opioid misuse, as well as potential advances in generating safer and more efficient pain therapies.</p>","PeriodicalId":12649,"journal":{"name":"Frontiers in Systems Neuroscience","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9628214/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Systems Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnsys.2022.1014768","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Decades of research advances have established a central role for endogenous opioid systems in regulating reward processing, mood, motivation, learning and memory, gastrointestinal function, and pain relief. Endogenous opioid systems are present ubiquitously throughout the central and peripheral nervous system. They are composed of four families, namely the μ (MOPR), κ (KOPR), δ (DOPR), and nociceptin/orphanin FQ (NOPR) opioid receptors systems. These receptors signal through the action of their endogenous opioid peptides β-endorphins, dynorphins, enkephalins, and nociceptins, respectfully, to maintain homeostasis under normal physiological states. Due to their prominent role in pain regulation, exogenous opioids-primarily targeting the MOPR, have been historically used in medicine as analgesics, but their ability to produce euphoric effects also present high risks for abuse. The ability of pain and opioid use to perturb endogenous opioid system function, particularly within the central nervous system, may increase the likelihood of developing opioid use disorder (OUD). Today, the opioid crisis represents a major social, economic, and public health concern. In this review, we summarize the current state of the literature on the function, expression, pharmacology, and regulation of endogenous opioid systems in pain. Additionally, we discuss the adaptations in the endogenous opioid systems upon use of exogenous opioids which contribute to the development of OUD. Finally, we describe the intricate relationship between pain, endogenous opioid systems, and the proclivity for opioid misuse, as well as potential advances in generating safer and more efficient pain therapies.

疼痛和阿片类药物使用障碍中的内源性阿片系统改变。
数十年的研究进展已经确立了内源性阿片系统在调节奖赏处理、情绪、动机、学习和记忆、肠胃功能以及止痛方面的核心作用。内源性阿片系统遍布中枢和外周神经系统。它们由四个家族组成,即μ(MOPR)、κ(KOPR)、δ(DOPR)和神经肽/表素 FQ(NOPR)阿片受体系统。这些受体通过其内源性阿片肽β-内啡肽、达诺啡肽、脑啡肽和神经肽的作用发出信号,以维持正常生理状态下的平衡。由于阿片类药物在疼痛调节中的突出作用,外源性阿片类药物--主要针对澳门巴黎人娱乐官网反应器--历来被用作镇痛药,但其产生兴奋效应的能力也带来了很高的滥用风险。疼痛和阿片类药物的使用能够扰乱内源性阿片类药物系统的功能,尤其是在中枢神经系统内,这可能会增加患阿片类药物使用障碍(OUD)的可能性。如今,阿片类药物危机已成为一个重大的社会、经济和公共卫生问题。在这篇综述中,我们总结了有关疼痛中内源性阿片系统的功能、表达、药理学和调节的文献现状。此外,我们还讨论了内源性阿片类药物系统在使用外源性阿片类药物时发生的适应性变化,这些变化导致了 OUD 的发生。最后,我们介绍了疼痛、内源性阿片系统和阿片类药物滥用倾向之间错综复杂的关系,以及在开发更安全、更有效的疼痛疗法方面可能取得的进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Systems Neuroscience
Frontiers in Systems Neuroscience Neuroscience-Developmental Neuroscience
CiteScore
6.00
自引率
3.30%
发文量
144
审稿时长
14 weeks
期刊介绍: Frontiers in Systems Neuroscience publishes rigorously peer-reviewed research that advances our understanding of whole systems of the brain, including those involved in sensation, movement, learning and memory, attention, reward, decision-making, reasoning, executive functions, and emotions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信