Jaehyeon Ryu, Yi Qiang, Dongyeol Jang, Junyeub Suh, Hui Fang
{"title":"Bilayer-Nanomesh Transparent Neuroelectrodes on 10μm-Thick PDMS.","authors":"Jaehyeon Ryu, Yi Qiang, Dongyeol Jang, Junyeub Suh, Hui Fang","doi":"10.1109/iedm45625.2022.10019516","DOIUrl":null,"url":null,"abstract":"<p><p>Transparent electrode arrays have emerged as promising platforms for neural interfacing by enabling simultaneous electrophysiological recording and optical measurements. Soft and thin devices also have compelling advantages due to their less mechanical mismatch with the brain tissue. Here we demonstrate a bilayer-nanomesh-based transparent microelectrode array (MEA) on ultrathin Polydimethylsiloxane (PDMS) substrate. We have successfully fabricated 32-channel, bilayer-nanomesh microelectrodes on PDMS with total device thickness down to only 10μm. In addition to excellent electrode performance, device reliability, and optical transparency, we have also demonstrated successful hydrophilic surface modification and great sterilization compatibility.</p>","PeriodicalId":74909,"journal":{"name":"Technical digest. International Electron Devices Meeting","volume":"2022 ","pages":"29.3.1-29.3.4"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9929514/pdf/nihms-1872549.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical digest. International Electron Devices Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iedm45625.2022.10019516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Transparent electrode arrays have emerged as promising platforms for neural interfacing by enabling simultaneous electrophysiological recording and optical measurements. Soft and thin devices also have compelling advantages due to their less mechanical mismatch with the brain tissue. Here we demonstrate a bilayer-nanomesh-based transparent microelectrode array (MEA) on ultrathin Polydimethylsiloxane (PDMS) substrate. We have successfully fabricated 32-channel, bilayer-nanomesh microelectrodes on PDMS with total device thickness down to only 10μm. In addition to excellent electrode performance, device reliability, and optical transparency, we have also demonstrated successful hydrophilic surface modification and great sterilization compatibility.