Sanaa H Elsayed, Nagui H Fares, Samar H Elsharkawy, Yomna I Mahmoud
{"title":"Flaxseed lignans alleviates isoproterenol-induced cardiac hypertrophy by regulating myocardial remodeling and oxidative stress.","authors":"Sanaa H Elsayed, Nagui H Fares, Samar H Elsharkawy, Yomna I Mahmoud","doi":"10.1080/01913123.2023.2175944","DOIUrl":null,"url":null,"abstract":"<p><p>Cardiovascular diseases, the leading global cause of death, are usually associated with cardiac hypertrophy (CH). CH is an adaptive response of the heart against cardiac overloading, but continuous CH accelerates cardiac remodeling and results in heart failure. Available CH therapies delay the progress of heart failure, but they often fail to control symptoms or restore quality of life. Although flaxseed lignans have been shown to have significant anti-oxidant, anti-hypertensive, anti-inflammatory, and anti-fibrotic effects in various cardiovascular diseases, little is known about their effect on CH. Thus, this study evaluated the therapeutic effect of flaxseed lignans on CH, which was induced by subcutaneous injections with isoproterenol (5 mg/kg b.w) for 14 consecutive days. Flaxseed lignans (200 mg/kg) was given orally for 4 weeks. Cardiac pathological remodeling was evaluated by echocardiography, after which morphometric, biochemical, histological, and ultrastructural analyses were performed. Flaxseed lignans significantly ameliorated CH structural and functional alterations as shown by echocardiography. Lignans also reduced the relative heart weight, significantly decreased the elevated CK-MB and the lipid peroxidation marker malondialdehyde, augmented the myocardial total antioxidant capacity, and ameliorated the histopathological and ultrastructural changes in cardiac tissues and prevented interstitial collagen deposition. The results demonstrate promising anti-hypertrophic effect of flaxseed lignans against isoproterenol-induced cardiac hypertrophy, via regulating myocardial remodeling and oxidative stress. Therefore, lignans could be used as potential pharmacological intervention in the management of CH.</p>","PeriodicalId":23430,"journal":{"name":"Ultrastructural Pathology","volume":" ","pages":"1-8"},"PeriodicalIF":1.1000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrastructural Pathology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/01913123.2023.2175944","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MICROSCOPY","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases, the leading global cause of death, are usually associated with cardiac hypertrophy (CH). CH is an adaptive response of the heart against cardiac overloading, but continuous CH accelerates cardiac remodeling and results in heart failure. Available CH therapies delay the progress of heart failure, but they often fail to control symptoms or restore quality of life. Although flaxseed lignans have been shown to have significant anti-oxidant, anti-hypertensive, anti-inflammatory, and anti-fibrotic effects in various cardiovascular diseases, little is known about their effect on CH. Thus, this study evaluated the therapeutic effect of flaxseed lignans on CH, which was induced by subcutaneous injections with isoproterenol (5 mg/kg b.w) for 14 consecutive days. Flaxseed lignans (200 mg/kg) was given orally for 4 weeks. Cardiac pathological remodeling was evaluated by echocardiography, after which morphometric, biochemical, histological, and ultrastructural analyses were performed. Flaxseed lignans significantly ameliorated CH structural and functional alterations as shown by echocardiography. Lignans also reduced the relative heart weight, significantly decreased the elevated CK-MB and the lipid peroxidation marker malondialdehyde, augmented the myocardial total antioxidant capacity, and ameliorated the histopathological and ultrastructural changes in cardiac tissues and prevented interstitial collagen deposition. The results demonstrate promising anti-hypertrophic effect of flaxseed lignans against isoproterenol-induced cardiac hypertrophy, via regulating myocardial remodeling and oxidative stress. Therefore, lignans could be used as potential pharmacological intervention in the management of CH.
期刊介绍:
Ultrastructural Pathology is the official journal of the Society for Ultrastructural Pathology. Published bimonthly, we are the only journal to be devoted entirely to diagnostic ultrastructural pathology.
Ultrastructural Pathology is the ideal journal to publish high-quality research on the following topics:
Advances in the uses of electron microscopic and immunohistochemical techniques
Correlations of ultrastructural data with light microscopy, histochemistry, immunohistochemistry, biochemistry, cell and tissue culturing, and electron probe analysis
Important new, investigative, clinical, and diagnostic EM methods.