Planetary Mapping Using Deep Learning: A Method to Evaluate Feature Identification Confidence Applied to Habitats in Mars-Analog Terrain.

IF 3.5 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Astrobiology Pub Date : 2023-01-01 DOI:10.1089/ast.2022.0014
Michael S Phillips, Jeffrey E Moersch, Nathalie A Cabrol, Alberto Candela, David Wettergreen, Kimberly Warren-Rhodes, Nancy W Hinman, The Seti Institute Nai
{"title":"Planetary Mapping Using Deep Learning: A Method to Evaluate Feature Identification Confidence Applied to Habitats in Mars-Analog Terrain.","authors":"Michael S Phillips,&nbsp;Jeffrey E Moersch,&nbsp;Nathalie A Cabrol,&nbsp;Alberto Candela,&nbsp;David Wettergreen,&nbsp;Kimberly Warren-Rhodes,&nbsp;Nancy W Hinman,&nbsp;The Seti Institute Nai","doi":"10.1089/ast.2022.0014","DOIUrl":null,"url":null,"abstract":"<p><p>The goals of Mars exploration are evolving beyond describing environmental habitability at global and regional scales to targeting specific locations for biosignature detection, sample return, and eventual human exploration. An increase in the specificity of scientific goals-from <i>follow the water</i> to <i>find the biosignatures</i>-requires parallel developments in strategies that translate terrestrial Mars-analog research into confident identification of rover-explorable targets on Mars. Precisely how to integrate terrestrial, ground-based analyses with orbital data sets and transfer those lessons into rover-relevant search strategies for biosignatures on Mars remains an open challenge. Here, leveraging small Unmanned Aerial System (sUAS) technology and state-of-the-art fully convolutional neural networks for pixel-wise classification, we present an end-to-end methodology that applies Deep Learning to map geomorphologic units and quantify feature identification confidence. We used this method to assess the identification confidence of rover-explorable habitats in the Mars-analog Salar de Pajonales over a range of spatial resolutions and found that spatial resolutions two times better than are available from Mars would be necessary to identify habitats in this study at the 1-σ (85%) confidence level. The approach we present could be used to compare the identifiability of habitats across Mars-analog environments and focus Mars exploration from the scale of regional habitability to the scale of specific habitats. Our methods could also be adapted to map dome- and ridge-like features on the surface of Mars to further understand their origin and astrobiological potential.</p>","PeriodicalId":8645,"journal":{"name":"Astrobiology","volume":"23 1","pages":"76-93"},"PeriodicalIF":3.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrobiology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1089/ast.2022.0014","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

The goals of Mars exploration are evolving beyond describing environmental habitability at global and regional scales to targeting specific locations for biosignature detection, sample return, and eventual human exploration. An increase in the specificity of scientific goals-from follow the water to find the biosignatures-requires parallel developments in strategies that translate terrestrial Mars-analog research into confident identification of rover-explorable targets on Mars. Precisely how to integrate terrestrial, ground-based analyses with orbital data sets and transfer those lessons into rover-relevant search strategies for biosignatures on Mars remains an open challenge. Here, leveraging small Unmanned Aerial System (sUAS) technology and state-of-the-art fully convolutional neural networks for pixel-wise classification, we present an end-to-end methodology that applies Deep Learning to map geomorphologic units and quantify feature identification confidence. We used this method to assess the identification confidence of rover-explorable habitats in the Mars-analog Salar de Pajonales over a range of spatial resolutions and found that spatial resolutions two times better than are available from Mars would be necessary to identify habitats in this study at the 1-σ (85%) confidence level. The approach we present could be used to compare the identifiability of habitats across Mars-analog environments and focus Mars exploration from the scale of regional habitability to the scale of specific habitats. Our methods could also be adapted to map dome- and ridge-like features on the surface of Mars to further understand their origin and astrobiological potential.

基于深度学习的行星制图:一种评估火星模拟地形栖息地特征识别置信度的方法。
火星探索的目标正在从描述全球和区域尺度上的环境可居住性发展到针对特定地点进行生物特征检测、样本返回,并最终进行人类探索。科学目标的专一性的增加——从跟踪水到寻找生物特征——需要在策略上并行发展,将陆地上的火星模拟研究转化为对火星上可探测目标的自信识别。确切地说,如何将陆地、地面分析与轨道数据集结合起来,并将这些经验教训转化为与火星车相关的火星生物特征搜索策略,仍然是一个悬而未决的挑战。在这里,利用小型无人机系统(sUAS)技术和最先进的全卷积神经网络进行逐像素分类,我们提出了一种端到端方法,该方法应用深度学习来绘制地貌单元并量化特征识别置信度。我们使用该方法评估了火星模拟帕约纳莱斯盐湖中探测车可探测栖息地在一定空间分辨率范围内的识别置信度,发现在1-σ(85%)置信度水平上,需要比火星高两倍的空间分辨率来识别本研究中的栖息地。我们提出的方法可以用来比较火星模拟环境中栖息地的可识别性,并将火星探索从区域可居住性的规模集中到特定栖息地的规模。我们的方法也可以用于绘制火星表面的圆顶和山脊状特征,以进一步了解它们的起源和天体生物学潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Astrobiology
Astrobiology 生物-地球科学综合
CiteScore
7.70
自引率
11.90%
发文量
100
审稿时长
3 months
期刊介绍: Astrobiology is the most-cited peer-reviewed journal dedicated to the understanding of life''s origin, evolution, and distribution in the universe, with a focus on new findings and discoveries from interplanetary exploration and laboratory research. Astrobiology coverage includes: Astrophysics; Astropaleontology; Astroplanets; Bioastronomy; Cosmochemistry; Ecogenomics; Exobiology; Extremophiles; Geomicrobiology; Gravitational biology; Life detection technology; Meteoritics; Planetary geoscience; Planetary protection; Prebiotic chemistry; Space exploration technology; Terraforming
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信