Measuring the effects of ice thickness on resolution in single particle cryo-EM

IF 3.5 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kasahun Neselu , Bing Wang , William J. Rice , Clinton S. Potter , Bridget Carragher , Eugene Y.D. Chua
{"title":"Measuring the effects of ice thickness on resolution in single particle cryo-EM","authors":"Kasahun Neselu ,&nbsp;Bing Wang ,&nbsp;William J. Rice ,&nbsp;Clinton S. Potter ,&nbsp;Bridget Carragher ,&nbsp;Eugene Y.D. Chua","doi":"10.1016/j.yjsbx.2023.100085","DOIUrl":null,"url":null,"abstract":"<div><p>Ice thickness is a critical parameter in single particle cryo-EM – too thin ice can break during imaging or exclude the sample of interest, while ice that is too thick contributes to more inelastic scattering that precludes obtaining high resolution reconstructions. Here we present the practical effects of ice thickness on resolution, and the influence of energy filters, accelerating voltage, or detector mode. We collected apoferritin data with a wide range of ice thicknesses on three microscopes with different instrumentation and settings. We show that on a 300 kV microscope, using a 20 eV energy filter slit has a greater effect on improving resolution in thicker ice; that operating at 300 kV instead of 200 kV accelerating voltage provides significant resolution improvements at an ice thickness above 150 nm; and that on a 200 kV microscope using a detector operating in super resolution mode enables good reconstructions for up to 200 nm ice thickness, while collecting in counting instead of linear mode leads to improvements in resolution for ice of 50–150 nm thickness. Our findings can serve as a guide for users seeking to optimize data collection or sample preparation routines for both single particle and in situ cryo-EM.<!--> <!-->We note that most in situ data collection is done on samples in a range of ice thickness above 150 nm so these results may be especially relevant to that community.</p></div>","PeriodicalId":17238,"journal":{"name":"Journal of Structural Biology: X","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/75/ea/main.PMC9894782.pdf","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Structural Biology: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590152423000016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 10

Abstract

Ice thickness is a critical parameter in single particle cryo-EM – too thin ice can break during imaging or exclude the sample of interest, while ice that is too thick contributes to more inelastic scattering that precludes obtaining high resolution reconstructions. Here we present the practical effects of ice thickness on resolution, and the influence of energy filters, accelerating voltage, or detector mode. We collected apoferritin data with a wide range of ice thicknesses on three microscopes with different instrumentation and settings. We show that on a 300 kV microscope, using a 20 eV energy filter slit has a greater effect on improving resolution in thicker ice; that operating at 300 kV instead of 200 kV accelerating voltage provides significant resolution improvements at an ice thickness above 150 nm; and that on a 200 kV microscope using a detector operating in super resolution mode enables good reconstructions for up to 200 nm ice thickness, while collecting in counting instead of linear mode leads to improvements in resolution for ice of 50–150 nm thickness. Our findings can serve as a guide for users seeking to optimize data collection or sample preparation routines for both single particle and in situ cryo-EM. We note that most in situ data collection is done on samples in a range of ice thickness above 150 nm so these results may be especially relevant to that community.

Abstract Image

测量冰厚对单颗粒低温电镜分辨率的影响
冰的厚度是单粒子冷冻电镜的一个关键参数——太薄的冰会在成像过程中破裂或排除感兴趣的样品,而太厚的冰会导致更多的非弹性散射,从而妨碍获得高分辨率的重建。本文介绍了冰厚对分辨率的实际影响,以及能量滤波器、加速电压或探测器模式的影响。我们在三种不同仪器和设置的显微镜上收集了大范围冰厚度的载铁蛋白数据。研究结果表明,在300 kV显微镜下,在较厚的冰层下,使用20 eV能量滤光片狭缝对提高分辨率有较大的效果;在150纳米以上的冰层厚度下,300千伏加速电压而不是200千伏加速电压可以显著提高分辨率;在200千伏显微镜上,使用超分辨率模式的检测器可以很好地重建高达200纳米厚度的冰,而计数收集而不是线性模式可以提高50-150纳米厚度的冰的分辨率。我们的发现可以作为用户寻求优化单颗粒和原位冷冻电镜的数据收集或样品制备程序的指南。我们注意到,大多数现场数据收集是在150纳米以上冰厚范围内的样品上完成的,因此这些结果可能与该群落特别相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Structural Biology: X
Journal of Structural Biology: X Biochemistry, Genetics and Molecular Biology-Structural Biology
CiteScore
6.50
自引率
0.00%
发文量
20
审稿时长
62 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信