Enhancing plastic biodegradation process: strategies and opportunities.

IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Critical Reviews in Biotechnology Pub Date : 2024-05-01 Epub Date: 2023-02-14 DOI:10.1080/07388551.2023.2170861
Xue Er Crystal Thew, Sewn Cen Lo, Ramakrishnan Nagasundara Ramanan, Beng Ti Tey, Nguyen Duc Huy, Ooi Chien Wei
{"title":"Enhancing plastic biodegradation process: strategies and opportunities.","authors":"Xue Er Crystal Thew, Sewn Cen Lo, Ramakrishnan Nagasundara Ramanan, Beng Ti Tey, Nguyen Duc Huy, Ooi Chien Wei","doi":"10.1080/07388551.2023.2170861","DOIUrl":null,"url":null,"abstract":"<p><p>Plastic biodegradation has emerged as a sustainable approach and green alternative in handling the ever-increasing accumulation of plastic wastes in the environment. The complete biodegradation of polyethylene terephthalate is one of the most recent breakthroughs in the field of plastic biodegradation. Despite the success, the effective and complete biodegradation of a wide variety of plastics is still far from the practical implementation, and an on-going effort has been mainly devoted to the exploration of novel microorganisms and enzymes for plastic biodegradation. However, alternative strategies which enhance the existing biodegradation process should not be neglected in the continuous advancement of this field. Thus, this review highlights various strategies which have shown to improve the biodegradation of plastics, which include the pretreatment of plastics using UV irradiation, thermal, or chemical treatments to increase the susceptibility of plastics toward microbial action. Alternative pretreatment strategies are also suggested and compared with the existing techniques. Besides, the effects of additives such as pro-oxidants, natural polymers, and surfactants on plastic biodegradation are discussed. In addition, considerations governing the biodegradation performance, such as the formulation of biodegradation medium, cell-free biocatalysis, and physico-chemical properties of plastics, are addressed. Lastly, the challenges and future prospects for the advancement of plastic biodegradation are also highlighted.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07388551.2023.2170861","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/2/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Plastic biodegradation has emerged as a sustainable approach and green alternative in handling the ever-increasing accumulation of plastic wastes in the environment. The complete biodegradation of polyethylene terephthalate is one of the most recent breakthroughs in the field of plastic biodegradation. Despite the success, the effective and complete biodegradation of a wide variety of plastics is still far from the practical implementation, and an on-going effort has been mainly devoted to the exploration of novel microorganisms and enzymes for plastic biodegradation. However, alternative strategies which enhance the existing biodegradation process should not be neglected in the continuous advancement of this field. Thus, this review highlights various strategies which have shown to improve the biodegradation of plastics, which include the pretreatment of plastics using UV irradiation, thermal, or chemical treatments to increase the susceptibility of plastics toward microbial action. Alternative pretreatment strategies are also suggested and compared with the existing techniques. Besides, the effects of additives such as pro-oxidants, natural polymers, and surfactants on plastic biodegradation are discussed. In addition, considerations governing the biodegradation performance, such as the formulation of biodegradation medium, cell-free biocatalysis, and physico-chemical properties of plastics, are addressed. Lastly, the challenges and future prospects for the advancement of plastic biodegradation are also highlighted.

加强塑料生物降解过程:战略和机遇。
塑料生物降解已成为处理环境中不断积累的塑料废物的一种可持续方法和绿色替代方案。聚对苯二甲酸乙二醇酯的完全生物降解是塑料生物降解领域的最新突破之一。尽管取得了成功,但各种塑料的有效和完全生物降解仍远未实际实施,目前的工作主要致力于探索用于塑料生物降解的新型微生物和酶。然而,在该领域的不断发展中,不应忽视增强现有生物降解过程的替代策略。因此,这篇综述强调了已经证明可以改善塑料生物降解的各种策略,包括使用紫外线照射、热处理或化学处理对塑料进行预处理,以增加塑料对微生物作用的敏感性。还提出了可供选择的预处理策略,并与现有技术进行了比较。此外,还讨论了促氧化剂、天然聚合物和表面活性剂等添加剂对塑料生物降解的影响。此外,还讨论了控制生物降解性能的因素,如生物降解介质的配方、无细胞生物催化和塑料的物理化学性质。最后,还强调了塑料生物降解的挑战和未来前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Critical Reviews in Biotechnology
Critical Reviews in Biotechnology 工程技术-生物工程与应用微生物
CiteScore
20.80
自引率
1.10%
发文量
71
审稿时长
4.8 months
期刊介绍: Biotechnological techniques, from fermentation to genetic manipulation, have become increasingly relevant to the food and beverage, fuel production, chemical and pharmaceutical, and waste management industries. Consequently, academic as well as industrial institutions need to keep abreast of the concepts, data, and methodologies evolved by continuing research. This journal provides a forum of critical evaluation of recent and current publications and, periodically, for state-of-the-art reports from various geographic areas around the world. Contributing authors are recognized experts in their fields, and each article is reviewed by an objective expert to ensure accuracy and objectivity of the presentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信