Artificial intelligence and its applications in digital hematopathology.

IF 1.5 Q3 HEMATOLOGY
血液科学(英文) Pub Date : 2022-07-14 eCollection Date: 2022-07-01 DOI:10.1097/BS9.0000000000000130
Yongfei Hu, Yinglun Luo, Guangjue Tang, Yan Huang, Juanjuan Kang, Dong Wang
{"title":"Artificial intelligence and its applications in digital hematopathology.","authors":"Yongfei Hu, Yinglun Luo, Guangjue Tang, Yan Huang, Juanjuan Kang, Dong Wang","doi":"10.1097/BS9.0000000000000130","DOIUrl":null,"url":null,"abstract":"<p><p>The advent of whole-slide imaging, faster image data generation, and cheaper forms of data storage have made it easier for pathologists to manipulate digital slide images and interpret more detailed biological processes in conjunction with clinical samples. In parallel, with continuous breakthroughs in object detection, image feature extraction, image classification and image segmentation, artificial intelligence (AI) is becoming the most beneficial technology for high-throughput analysis of image data in various biomedical imaging disciplines. Integrating digital images into biological workflows, advanced algorithms, and computer vision techniques expands the biologist's horizons beyond the microscope slide. Here, we introduce recent developments in AI applied to microscopy in hematopathology. We give an overview of its concepts and present its applications in normal or abnormal hematopoietic cells identification. We discuss how AI shows great potential to push the limits of microscopy and enhance the resolution, signal and information content of acquired data. Its shortcomings are discussed, as well as future directions for the field.</p>","PeriodicalId":67343,"journal":{"name":"血液科学(英文)","volume":"4 3","pages":"136-142"},"PeriodicalIF":1.5000,"publicationDate":"2022-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/33/7f/bs9-4-136.PMC9742095.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"血液科学(英文)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/BS9.0000000000000130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/7/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The advent of whole-slide imaging, faster image data generation, and cheaper forms of data storage have made it easier for pathologists to manipulate digital slide images and interpret more detailed biological processes in conjunction with clinical samples. In parallel, with continuous breakthroughs in object detection, image feature extraction, image classification and image segmentation, artificial intelligence (AI) is becoming the most beneficial technology for high-throughput analysis of image data in various biomedical imaging disciplines. Integrating digital images into biological workflows, advanced algorithms, and computer vision techniques expands the biologist's horizons beyond the microscope slide. Here, we introduce recent developments in AI applied to microscopy in hematopathology. We give an overview of its concepts and present its applications in normal or abnormal hematopoietic cells identification. We discuss how AI shows great potential to push the limits of microscopy and enhance the resolution, signal and information content of acquired data. Its shortcomings are discussed, as well as future directions for the field.

Abstract Image

Abstract Image

人工智能及其在数字血液病理学中的应用。
全切片成像技术的出现、更快的图像数据生成速度以及更廉价的数据存储方式,使病理学家可以更轻松地处理数字切片图像,并结合临床样本解读更详细的生物过程。与此同时,随着物体检测、图像特征提取、图像分类和图像分割技术的不断突破,人工智能(AI)正成为各生物医学成像学科对图像数据进行高通量分析的最有利技术。将数字图像融入生物工作流程、先进的算法和计算机视觉技术,拓展了生物学家在显微镜载玻片之外的视野。在此,我们将介绍应用于血液病理学显微镜的人工智能的最新发展。我们概述了其概念,并介绍了其在正常或异常造血细胞识别中的应用。我们讨论了人工智能如何在突破显微镜极限、提高所获数据的分辨率、信号和信息含量方面展现出巨大潜力。我们还讨论了其不足之处以及该领域的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信