Jing Ni, Hiroyuki Ito, Masaki Ogawa, Shoji Sunaga, Stephen Palmisano
{"title":"Prior Exposure to Dynamic Visual Displays Reduces Vection Onset Latency.","authors":"Jing Ni, Hiroyuki Ito, Masaki Ogawa, Shoji Sunaga, Stephen Palmisano","doi":"10.1163/22134808-bja10084","DOIUrl":null,"url":null,"abstract":"<p><p>While compelling illusions of self-motion (vection) can be induced purely by visual motion, they are rarely experienced immediately. This vection onset latency is thought to represent the time required to resolve sensory conflicts between the stationary observer's visual and nonvisual information about self-motion. In this study, we investigated whether manipulations designed to increase the weightings assigned to vision (compared to the nonvisual senses) might reduce vection onset latency. We presented two different types of visual priming displays directly before our main vection-inducing displays: (1) 'random motion' priming displays - designed to pre-activate general, as opposed to self-motion-specific, visual motion processing systems; and (2) 'dynamic no-motion' priming displays - designed to stimulate vision, but not generate conscious motion perceptions. Prior exposure to both types of priming displays was found to significantly shorten vection onset latencies for the main self-motion display. These experiments show that vection onset latencies can be reduced by pre-activating the visual system with both types of priming display. Importantly, these visual priming displays did not need to be capable of inducing vection or conscious motion perception in order to produce such benefits.</p>","PeriodicalId":51298,"journal":{"name":"Multisensory Research","volume":"35 7-8","pages":"653-676"},"PeriodicalIF":1.8000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multisensory Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1163/22134808-bja10084","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
While compelling illusions of self-motion (vection) can be induced purely by visual motion, they are rarely experienced immediately. This vection onset latency is thought to represent the time required to resolve sensory conflicts between the stationary observer's visual and nonvisual information about self-motion. In this study, we investigated whether manipulations designed to increase the weightings assigned to vision (compared to the nonvisual senses) might reduce vection onset latency. We presented two different types of visual priming displays directly before our main vection-inducing displays: (1) 'random motion' priming displays - designed to pre-activate general, as opposed to self-motion-specific, visual motion processing systems; and (2) 'dynamic no-motion' priming displays - designed to stimulate vision, but not generate conscious motion perceptions. Prior exposure to both types of priming displays was found to significantly shorten vection onset latencies for the main self-motion display. These experiments show that vection onset latencies can be reduced by pre-activating the visual system with both types of priming display. Importantly, these visual priming displays did not need to be capable of inducing vection or conscious motion perception in order to produce such benefits.
期刊介绍:
Multisensory Research is an interdisciplinary archival journal covering all aspects of multisensory processing including the control of action, cognition and attention. Research using any approach to increase our understanding of multisensory perceptual, behavioural, neural and computational mechanisms is encouraged. Empirical, neurophysiological, psychophysical, brain imaging, clinical, developmental, mathematical and computational analyses are welcome. Research will also be considered covering multisensory applications such as sensory substitution, crossmodal methods for delivering sensory information or multisensory approaches to robotics and engineering. Short communications and technical notes that draw attention to new developments will be included, as will reviews and commentaries on current issues. Special issues dealing with specific topics will be announced from time to time. Multisensory Research is a continuation of Seeing and Perceiving, and of Spatial Vision.