Prior Exposure to Dynamic Visual Displays Reduces Vection Onset Latency.

IF 1.8 4区 心理学 Q3 BIOPHYSICS
Jing Ni, Hiroyuki Ito, Masaki Ogawa, Shoji Sunaga, Stephen Palmisano
{"title":"Prior Exposure to Dynamic Visual Displays Reduces Vection Onset Latency.","authors":"Jing Ni,&nbsp;Hiroyuki Ito,&nbsp;Masaki Ogawa,&nbsp;Shoji Sunaga,&nbsp;Stephen Palmisano","doi":"10.1163/22134808-bja10084","DOIUrl":null,"url":null,"abstract":"<p><p>While compelling illusions of self-motion (vection) can be induced purely by visual motion, they are rarely experienced immediately. This vection onset latency is thought to represent the time required to resolve sensory conflicts between the stationary observer's visual and nonvisual information about self-motion. In this study, we investigated whether manipulations designed to increase the weightings assigned to vision (compared to the nonvisual senses) might reduce vection onset latency. We presented two different types of visual priming displays directly before our main vection-inducing displays: (1) 'random motion' priming displays - designed to pre-activate general, as opposed to self-motion-specific, visual motion processing systems; and (2) 'dynamic no-motion' priming displays - designed to stimulate vision, but not generate conscious motion perceptions. Prior exposure to both types of priming displays was found to significantly shorten vection onset latencies for the main self-motion display. These experiments show that vection onset latencies can be reduced by pre-activating the visual system with both types of priming display. Importantly, these visual priming displays did not need to be capable of inducing vection or conscious motion perception in order to produce such benefits.</p>","PeriodicalId":51298,"journal":{"name":"Multisensory Research","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multisensory Research","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1163/22134808-bja10084","RegionNum":4,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

While compelling illusions of self-motion (vection) can be induced purely by visual motion, they are rarely experienced immediately. This vection onset latency is thought to represent the time required to resolve sensory conflicts between the stationary observer's visual and nonvisual information about self-motion. In this study, we investigated whether manipulations designed to increase the weightings assigned to vision (compared to the nonvisual senses) might reduce vection onset latency. We presented two different types of visual priming displays directly before our main vection-inducing displays: (1) 'random motion' priming displays - designed to pre-activate general, as opposed to self-motion-specific, visual motion processing systems; and (2) 'dynamic no-motion' priming displays - designed to stimulate vision, but not generate conscious motion perceptions. Prior exposure to both types of priming displays was found to significantly shorten vection onset latencies for the main self-motion display. These experiments show that vection onset latencies can be reduced by pre-activating the visual system with both types of priming display. Importantly, these visual priming displays did not need to be capable of inducing vection or conscious motion perception in order to produce such benefits.

先前暴露于动态视觉显示减少向量开始延迟。
虽然令人信服的自我运动幻觉(垂直运动)可以纯粹由视觉运动引起,但它们很少立即体验到。这个矢量开始延迟被认为是用来表示解决静止观察者的视觉和非视觉信息之间的感觉冲突所需的时间。在这项研究中,我们调查了设计用于增加分配给视觉的权重的操作(与非视觉感官相比)是否可以减少向量开始延迟。在主要的矢量诱导显示之前,我们展示了两种不同类型的视觉启动显示:(1)“随机运动”启动显示-旨在预先激活一般,而不是自我运动特定的视觉运动处理系统;和(2)“动态无运动”启动显示——旨在刺激视觉,但不会产生有意识的运动感知。先前暴露于两种类型的启动显示被发现显著缩短向量开始潜伏期的主要自我运动显示。这些实验表明,用两种类型的启动显示预先激活视觉系统可以减少向量启动延迟。重要的是,为了产生这样的好处,这些视觉启动显示并不需要能够诱导矢量或有意识的运动感知。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Multisensory Research
Multisensory Research BIOPHYSICS-PSYCHOLOGY
CiteScore
3.50
自引率
12.50%
发文量
15
期刊介绍: Multisensory Research is an interdisciplinary archival journal covering all aspects of multisensory processing including the control of action, cognition and attention. Research using any approach to increase our understanding of multisensory perceptual, behavioural, neural and computational mechanisms is encouraged. Empirical, neurophysiological, psychophysical, brain imaging, clinical, developmental, mathematical and computational analyses are welcome. Research will also be considered covering multisensory applications such as sensory substitution, crossmodal methods for delivering sensory information or multisensory approaches to robotics and engineering. Short communications and technical notes that draw attention to new developments will be included, as will reviews and commentaries on current issues. Special issues dealing with specific topics will be announced from time to time. Multisensory Research is a continuation of Seeing and Perceiving, and of Spatial Vision.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信