Investigation and confirmation of differentially expressed miRNAs, as well as target gene prediction in papillary thyroid cancer, with a special emphasis on the autophagy signaling pathway.
{"title":"Investigation and confirmation of differentially expressed miRNAs, as well as target gene prediction in papillary thyroid cancer, with a special emphasis on the autophagy signaling pathway.","authors":"Mojtaba Zehtabi, Zahra Akbarpour, Sepehr Valizadeh, Yousef Roosta, Amir Mahdi Khamaneh, Mortaza Raeisi","doi":"10.22099/mbrc.2022.43844.1751","DOIUrl":null,"url":null,"abstract":"<p><p>Papillary thyroid carcinoma (PTC) is the most common endocrine cancer. However, the role of biomechanics in the development and progression of PTC is obscure. The microarray dataset GSE104005 was examined to identify important microRNAs (miRNAs or miRs) and their probable roles in the carcinogenesis of PTC. The gene expression omnibus (GEO) database was used to obtain the data. R was used to access the differentially expressed miRNAs (DEMs) and genes (DEGs). The multiMiR software was used to predict DEM targets. To validate the top DEMs and DEGs, thirty tissue samples were obtained from PTC patients who had their thyroids removed and compared with 30 normal samples. The total RNA content of the tumor and corresponding non-tumoral adjacent samples were purified and converted to cDNA. Expression levels of top dysregulated miRNAs and their target and predicted DEG were evaluated using the RT-qPCR method. miR-182 and miR-183 were top upregulated miRs and miR-30d was the most downregulated miR among DEMs. Furthermore, FOXO1 which was shown to be targeted by aforementioned miRNAs, was the most downregulated genes among other DEGs. 10 hub nodes were detected by PPI construction. PTEN was the hub node with highest score. The i<i>n vitro</i> gene expression analysis was also showed the same expression pattern in tissues. Significant increase in miR-182-5p and miR-183-5p expressions, as well as a significant decrease in FOXO1 and miR-30d-5p expressions, suggest that PTC cells may tend to preserve their autophagy capability.</p>","PeriodicalId":19025,"journal":{"name":"Molecular Biology Research Communications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9905749/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology Research Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22099/mbrc.2022.43844.1751","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Papillary thyroid carcinoma (PTC) is the most common endocrine cancer. However, the role of biomechanics in the development and progression of PTC is obscure. The microarray dataset GSE104005 was examined to identify important microRNAs (miRNAs or miRs) and their probable roles in the carcinogenesis of PTC. The gene expression omnibus (GEO) database was used to obtain the data. R was used to access the differentially expressed miRNAs (DEMs) and genes (DEGs). The multiMiR software was used to predict DEM targets. To validate the top DEMs and DEGs, thirty tissue samples were obtained from PTC patients who had their thyroids removed and compared with 30 normal samples. The total RNA content of the tumor and corresponding non-tumoral adjacent samples were purified and converted to cDNA. Expression levels of top dysregulated miRNAs and their target and predicted DEG were evaluated using the RT-qPCR method. miR-182 and miR-183 were top upregulated miRs and miR-30d was the most downregulated miR among DEMs. Furthermore, FOXO1 which was shown to be targeted by aforementioned miRNAs, was the most downregulated genes among other DEGs. 10 hub nodes were detected by PPI construction. PTEN was the hub node with highest score. The in vitro gene expression analysis was also showed the same expression pattern in tissues. Significant increase in miR-182-5p and miR-183-5p expressions, as well as a significant decrease in FOXO1 and miR-30d-5p expressions, suggest that PTC cells may tend to preserve their autophagy capability.
期刊介绍:
“Molecular Biology Research Communications” (MBRC) is an international journal of Molecular Biology. It is published quarterly by Shiraz University (Iran). The MBRC is a fully peer-reviewed journal. The journal welcomes submission of Original articles, Short communications, Invited review articles, and Letters to the Editor which meets the general criteria of significance and scientific excellence in all fields of “Molecular Biology”.