Angela Coral-Medina, John P Morrissey, Carole Camarasa
{"title":"The growth and metabolome of Saccharomyces uvarum in wine fermentations are strongly influenced by the route of nitrogen assimilation.","authors":"Angela Coral-Medina, John P Morrissey, Carole Camarasa","doi":"10.1093/jimb/kuac025","DOIUrl":null,"url":null,"abstract":"<p><p>Nitrogen is a critical nutrient in beverage fermentations, influencing fermentation performance and formation of compounds that affect organoleptic properties of the product. Traditionally, most commercial wine fermentations rely on Saccharomyces cerevisiae but the potential of alternative yeasts is increasingly recognised because of the possibility to deliver innovative products and process improvements. In this regard, Saccharomyces uvarum is an attractive non-traditional yeast that, while quite closely related to S. cerevisiae, displays a different fermentative and aromatic profile. Although S. uvarum is used in cider-making and in some winemaking, better knowledge of its physiology and metabolism is required if its full potential is to be realised. To address this gap, we performed a comparative analysis of the response of S. uvarum and S. cerevisiae to 13 different sources of nitrogen, assessing key parameters such as growth, fermentation performance, the production of central carbon metabolites and aroma volatile compounds. We observed that the two species differ in the production of acetate, succinate, medium-chain fatty acids, phenylethanol, phenylethyl acetate, and fusel/branched acids in ways that reflect different distribution of fluxes in the metabolic network. The integrated analysis revealed different patterns of yeast performance and activity linked to whether growth was on amino acids metabolised via the Ehrlich pathway or on amino acids and compounds assimilated through the central nitrogen core. This study highlights differences between the two yeasts and the importance that nitrogen metabolism can play in modulating the sensory profile of wine when using S. uvarum as the fermentative yeast.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":"49 6","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/b8/a5/kuac025.PMC9923386.pdf","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuac025","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 3
Abstract
Nitrogen is a critical nutrient in beverage fermentations, influencing fermentation performance and formation of compounds that affect organoleptic properties of the product. Traditionally, most commercial wine fermentations rely on Saccharomyces cerevisiae but the potential of alternative yeasts is increasingly recognised because of the possibility to deliver innovative products and process improvements. In this regard, Saccharomyces uvarum is an attractive non-traditional yeast that, while quite closely related to S. cerevisiae, displays a different fermentative and aromatic profile. Although S. uvarum is used in cider-making and in some winemaking, better knowledge of its physiology and metabolism is required if its full potential is to be realised. To address this gap, we performed a comparative analysis of the response of S. uvarum and S. cerevisiae to 13 different sources of nitrogen, assessing key parameters such as growth, fermentation performance, the production of central carbon metabolites and aroma volatile compounds. We observed that the two species differ in the production of acetate, succinate, medium-chain fatty acids, phenylethanol, phenylethyl acetate, and fusel/branched acids in ways that reflect different distribution of fluxes in the metabolic network. The integrated analysis revealed different patterns of yeast performance and activity linked to whether growth was on amino acids metabolised via the Ehrlich pathway or on amino acids and compounds assimilated through the central nitrogen core. This study highlights differences between the two yeasts and the importance that nitrogen metabolism can play in modulating the sensory profile of wine when using S. uvarum as the fermentative yeast.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology