Clonal hematopoiesis, somatic mosaicism, and age-associated disease.

IF 29.9 1区 医学 Q1 PHYSIOLOGY
Physiological reviews Pub Date : 2023-01-01 Epub Date: 2022-09-01 DOI:10.1152/physrev.00004.2022
Megan A Evans, Kenneth Walsh
{"title":"Clonal hematopoiesis, somatic mosaicism, and age-associated disease.","authors":"Megan A Evans, Kenneth Walsh","doi":"10.1152/physrev.00004.2022","DOIUrl":null,"url":null,"abstract":"<p><p>Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.</p>","PeriodicalId":20193,"journal":{"name":"Physiological reviews","volume":"103 1","pages":"649-716"},"PeriodicalIF":29.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9639777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/physrev.00004.2022","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Somatic mosaicism, the occurrence of multiple genetically distinct cell clones within the same tissue, is an evitable consequence of human aging. The hematopoietic system is no exception to this, where studies have revealed the presence of expanded blood cell clones carrying mutations in preleukemic driver genes and/or genetic alterations in chromosomes. This phenomenon is referred to as clonal hematopoiesis and is remarkably prevalent in elderly individuals. While clonal hematopoiesis represents an early step toward a hematological malignancy, most individuals will never develop blood cancer. Somewhat unexpectedly, epidemiological studies have found that clonal hematopoiesis is associated with an increase in the risk of all-cause mortality and age-related disease, particularly in the cardiovascular system. Studies using murine models of clonal hematopoiesis have begun to shed light on this relationship, suggesting that driver mutations in mature blood cells can causally contribute to aging and disease by augmenting inflammatory processes. Here we provide an up-to-date review of clonal hematopoiesis within the context of somatic mosaicism and aging and describe recent epidemiological studies that have reported associations with age-related disease. We will also discuss the experimental studies that have provided important mechanistic insight into how driver mutations promote age-related disease and how this knowledge could be leveraged to treat individuals with clonal hematopoiesis.

克隆造血、体细胞嵌合和年龄相关疾病。
体细胞镶嵌(Somatic mosaicism),即在同一组织中出现多个基因不同的细胞克隆,是人类衰老的必然结果。造血系统也不例外,研究发现,在造血系统中存在着携带白血病前驱动基因突变和/或染色体基因改变的扩增血细胞克隆。这种现象被称为克隆性造血,在老年人中非常普遍。虽然克隆性造血是血液恶性肿瘤的早期阶段,但大多数人永远不会患上血癌。有些出乎意料的是,流行病学研究发现,克隆性造血与全因死亡率和老年相关疾病(尤其是心血管系统疾病)风险的增加有关。利用小鼠克隆造血模型进行的研究已开始揭示这种关系,表明成熟血细胞中的驱动突变可通过增强炎症过程而导致衰老和疾病。在此,我们对体细胞嵌合和衰老背景下的克隆造血进行了最新综述,并介绍了近期流行病学研究中报告的与年龄相关疾病的关联。我们还将讨论一些实验研究,这些研究从机理上揭示了驱动基因突变是如何促进老年相关疾病的,以及如何利用这些知识来治疗克隆性造血。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physiological reviews
Physiological reviews 医学-生理学
CiteScore
56.50
自引率
0.90%
发文量
53
期刊介绍: Physiological Reviews is a highly regarded journal that covers timely issues in physiological and biomedical sciences. It is targeted towards physiologists, neuroscientists, cell biologists, biophysicists, and clinicians with a special interest in pathophysiology. The journal has an ISSN of 0031-9333 for print and 1522-1210 for online versions. It has a unique publishing frequency where articles are published individually, but regular quarterly issues are also released in January, April, July, and October. The articles in this journal provide state-of-the-art and comprehensive coverage of various topics. They are valuable for teaching and research purposes as they offer interesting and clearly written updates on important new developments. Physiological Reviews holds a prominent position in the scientific community and consistently ranks as the most impactful journal in the field of physiology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信