Summing μ ( n ) : a faster elementary algorithm.

IF 0.6 Q3 MATHEMATICS
Harald Andrés Helfgott, Lola Thompson
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">Summing <ns0:math><ns0:mrow><ns0:mi>μ</ns0:mi> <ns0:mo>(</ns0:mo> <ns0:mi>n</ns0:mi> <ns0:mo>)</ns0:mo></ns0:mrow> </ns0:math> : a faster elementary algorithm.","authors":"Harald Andrés Helfgott,&nbsp;Lola Thompson","doi":"10.1007/s40993-022-00408-8","DOIUrl":null,"url":null,"abstract":"<p><p>We present a new elementary algorithm that takes <math><mrow><mtext>time</mtext> <mspace></mspace> <mspace></mspace> <msub><mi>O</mi> <mi>ϵ</mi></msub> <mfenced><msup><mi>x</mi> <mfrac><mn>3</mn> <mn>5</mn></mfrac> </msup> <msup><mrow><mo>(</mo> <mo>log</mo> <mi>x</mi> <mo>)</mo></mrow> <mrow><mfrac><mn>8</mn> <mn>5</mn></mfrac> <mo>+</mo> <mi>ϵ</mi></mrow> </msup> </mfenced> <mspace></mspace> <mspace></mspace> <mtext>and</mtext> <mspace></mspace> <mtext>space</mtext> <mspace></mspace> <mspace></mspace> <mi>O</mi> <mfenced><msup><mi>x</mi> <mfrac><mn>3</mn> <mn>10</mn></mfrac> </msup> <msup><mrow><mo>(</mo> <mo>log</mo> <mi>x</mi> <mo>)</mo></mrow> <mfrac><mn>13</mn> <mn>10</mn></mfrac> </msup> </mfenced> </mrow> </math> (measured bitwise) for computing <math><mrow><mi>M</mi> <mrow><mo>(</mo> <mi>x</mi> <mo>)</mo></mrow> <mo>=</mo> <msub><mo>∑</mo> <mrow><mi>n</mi> <mo>≤</mo> <mi>x</mi></mrow> </msub> <mi>μ</mi> <mrow><mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> <mo>,</mo></mrow> </math> where <math><mrow><mi>μ</mi> <mo>(</mo> <mi>n</mi> <mo>)</mo></mrow> </math> is the Möbius function. This is the first improvement in the exponent of <i>x</i> for an elementary algorithm since 1985. We also show that it is possible to reduce space consumption to <math><mrow><mi>O</mi> <mo>(</mo> <msup><mi>x</mi> <mrow><mn>1</mn> <mo>/</mo> <mn>5</mn></mrow> </msup> <msup><mrow><mo>(</mo> <mo>log</mo> <mi>x</mi> <mo>)</mo></mrow> <mrow><mn>5</mn> <mo>/</mo> <mn>3</mn></mrow> </msup> <mo>)</mo></mrow> </math> by the use of (Helfgott in: Math Comput 89:333-350, 2020), at the cost of letting time rise to the order of <math> <mrow><msup><mi>x</mi> <mrow><mn>3</mn> <mo>/</mo> <mn>5</mn></mrow> </msup> <msup><mrow><mo>(</mo> <mo>log</mo> <mi>x</mi> <mo>)</mo></mrow> <mn>2</mn></msup> <mo>log</mo> <mo>log</mo> <mi>x</mi></mrow> </math> .</p>","PeriodicalId":43826,"journal":{"name":"Research in Number Theory","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9731940/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40993-022-00408-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new elementary algorithm that takes time O ϵ x 3 5 ( log x ) 8 5 + ϵ and space O x 3 10 ( log x ) 13 10 (measured bitwise) for computing M ( x ) = n x μ ( n ) , where μ ( n ) is the Möbius function. This is the first improvement in the exponent of x for an elementary algorithm since 1985. We also show that it is possible to reduce space consumption to O ( x 1 / 5 ( log x ) 5 / 3 ) by the use of (Helfgott in: Math Comput 89:333-350, 2020), at the cost of letting time rise to the order of x 3 / 5 ( log x ) 2 log log x .

Abstract Image

Abstract Image

Abstract Image

求和μ (n):一个更快的初等算法。
我们提出了一种新的初等算法,用于计算M (x) =∑n≤x μ (n),该算法花费时间O λ x 35 (log x) 85 + λ和空间O λ 3 10 (log x) 13 10(按位测量),其中μ (n)是Möbius函数。这是1985年以来初等算法对x指数的第一次改进。我们还表明,通过使用(Helfgott in: Math computer 89:333- 350,2020),可以将空间消耗减少到O (x 1 / 5 (log x) 5 / 3),代价是让时间上升到x 3 / 5 (log x) 2 log log x的数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
12.50%
发文量
88
期刊介绍: Research in Number Theory is an international, peer-reviewed Hybrid Journal covering the scope of the mathematical disciplines of Number Theory and Arithmetic Geometry. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to these research areas. It will also publish shorter research communications (Letters) covering nascent research in some of the burgeoning areas of number theory research. This journal publishes the highest quality papers in all of the traditional areas of number theory research, and it actively seeks to publish seminal papers in the most emerging and interdisciplinary areas here as well. Research in Number Theory also publishes comprehensive reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信