P Baldrian, L Bell-Dereske, C Lepinay, T Větrovský, P Kohout
{"title":"Fungal communities in soils under global change.","authors":"P Baldrian, L Bell-Dereske, C Lepinay, T Větrovský, P Kohout","doi":"10.3114/sim.2022.103.01","DOIUrl":null,"url":null,"abstract":"<p><p>Soil fungi play indispensable roles in all ecosystems including the recycling of organic matter and interactions with plants, both as symbionts and pathogens. Past observations and experimental manipulations indicate that projected global change effects, including the increase of CO<sub>2</sub> concentration, temperature, change of precipitation and nitrogen (N) deposition, affect fungal species and communities in soils. Although the observed effects depend on the size and duration of change and reflect local conditions, increased N deposition seems to have the most profound effect on fungal communities. The plant-mutualistic fungal guilds - ectomycorrhizal fungi and arbuscular mycorrhizal fungi - appear to be especially responsive to global change factors with N deposition and warming seemingly having the strongest adverse effects. While global change effects on fungal biodiversity seem to be limited, multiple studies demonstrate increases in abundance and dispersal of plant pathogenic fungi. Additionally, ecosystems weakened by global change-induced phenomena, such as drought, are more vulnerable to pathogen outbreaks. The shift from mutualistic fungi to plant pathogens is likely the largest potential threat for the future functioning of natural and managed ecosystems. However, our ability to predict global change effects on fungi is still insufficient and requires further experimental work and long-term observations. <b>Citation:</b> Baldrian P, Bell-Dereske L, Lepinay C, Větrovský T, Kohout P (2022). Fungal communities in soils under global change. <i>Studies in Mycology</i> <b>103</b>: 1-24. doi: 10.3114/sim.2022.103.01.</p>","PeriodicalId":22036,"journal":{"name":"Studies in Mycology","volume":"103 ","pages":"1-24"},"PeriodicalIF":14.1000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9886077/pdf/","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Mycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3114/sim.2022.103.01","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MYCOLOGY","Score":null,"Total":0}
引用次数: 6
Abstract
Soil fungi play indispensable roles in all ecosystems including the recycling of organic matter and interactions with plants, both as symbionts and pathogens. Past observations and experimental manipulations indicate that projected global change effects, including the increase of CO2 concentration, temperature, change of precipitation and nitrogen (N) deposition, affect fungal species and communities in soils. Although the observed effects depend on the size and duration of change and reflect local conditions, increased N deposition seems to have the most profound effect on fungal communities. The plant-mutualistic fungal guilds - ectomycorrhizal fungi and arbuscular mycorrhizal fungi - appear to be especially responsive to global change factors with N deposition and warming seemingly having the strongest adverse effects. While global change effects on fungal biodiversity seem to be limited, multiple studies demonstrate increases in abundance and dispersal of plant pathogenic fungi. Additionally, ecosystems weakened by global change-induced phenomena, such as drought, are more vulnerable to pathogen outbreaks. The shift from mutualistic fungi to plant pathogens is likely the largest potential threat for the future functioning of natural and managed ecosystems. However, our ability to predict global change effects on fungi is still insufficient and requires further experimental work and long-term observations. Citation: Baldrian P, Bell-Dereske L, Lepinay C, Větrovský T, Kohout P (2022). Fungal communities in soils under global change. Studies in Mycology103: 1-24. doi: 10.3114/sim.2022.103.01.
期刊介绍:
The international journal Studies in Mycology focuses on advancing the understanding of filamentous fungi, yeasts, and various aspects of mycology. It publishes comprehensive systematic monographs as well as topical issues covering a wide range of subjects including biotechnology, ecology, molecular biology, pathology, and systematics. This Open-Access journal offers unrestricted access to its content.
Each issue of Studies in Mycology consists of around 5 to 6 papers, either in the form of monographs or special focused topics. Unlike traditional length restrictions, the journal encourages submissions of manuscripts with a minimum of 50 A4 pages in print. This ensures a thorough exploration and presentation of the research findings, maximizing the depth of the published work.