Embryonic and juvenile snakes (Natrix maura, Linnaeus 1758) compensate for high elevation hypoxia via shifts in cardiovascular physiology and metabolism
Jérémie Souchet, Alicia Josserand, Elodie Darnet, Hugo Le Chevalier, Audrey Trochet, Romain Bertrand, Olivier Calvez, Albert Martinez-Silvestre, Olivier Guillaume, Marc Mossoll-Torres, Gilles Pottier, Hervé Philippe, Fabien Aubret, Eric J. Gangloff
{"title":"Embryonic and juvenile snakes (Natrix maura, Linnaeus 1758) compensate for high elevation hypoxia via shifts in cardiovascular physiology and metabolism","authors":"Jérémie Souchet, Alicia Josserand, Elodie Darnet, Hugo Le Chevalier, Audrey Trochet, Romain Bertrand, Olivier Calvez, Albert Martinez-Silvestre, Olivier Guillaume, Marc Mossoll-Torres, Gilles Pottier, Hervé Philippe, Fabien Aubret, Eric J. Gangloff","doi":"10.1002/jez.2756","DOIUrl":null,"url":null,"abstract":"<p>The colonization of novel environments requires a favorable response to conditions never, or rarely, encountered in recent evolutionary history. For example, populations colonizing upslope habitats must cope with lower atmospheric pressure at elevation, and thus reduced oxygen availability. The embryo stage in oviparous organisms is particularly susceptible, given its lack of mobility and limited gas exchange via diffusion through the eggshell and membranes. Especially little is known about responses of Lepidosaurian reptiles to reduced oxygen availability. To test the role of physiological plasticity during early development in response to high elevation hypoxia, we performed a transplant experiment with the viperine snake (<i>Natrix maura</i>, Linnaeus 1758). We maintained gravid females originating from low elevation populations (432 m above sea level [ASL]—normoxia) at both the elevation of origin and high elevation (2877 m ASL—extreme high elevation hypoxia; approximately 72% oxygen availability relative to sea level), then incubated egg clutches at both low and high elevation. Regardless of maternal exposure to hypoxia during gestation, embryos incubated at extreme high elevation exhibited altered developmental trajectories of cardiovascular function and metabolism across the incubation period, including a reduction in late-development egg mass. This physiological response may have contributed to the maintenance of similar incubation duration, hatching success, and hatchling body size compared to embryos incubated at low elevation. Nevertheless, after being maintained in hypoxia, juveniles exhibit reduced carbon dioxide production relative to oxygen consumption, suggesting altered energy pathways compared to juveniles maintained in normoxia. These findings highlight the role of physiological plasticity in maintaining rates of survival and fitness-relevant phenotypes in novel environments.</p>","PeriodicalId":15711,"journal":{"name":"Journal of experimental zoology. Part A, Ecological and integrative physiology","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of experimental zoology. Part A, Ecological and integrative physiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jez.2756","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The colonization of novel environments requires a favorable response to conditions never, or rarely, encountered in recent evolutionary history. For example, populations colonizing upslope habitats must cope with lower atmospheric pressure at elevation, and thus reduced oxygen availability. The embryo stage in oviparous organisms is particularly susceptible, given its lack of mobility and limited gas exchange via diffusion through the eggshell and membranes. Especially little is known about responses of Lepidosaurian reptiles to reduced oxygen availability. To test the role of physiological plasticity during early development in response to high elevation hypoxia, we performed a transplant experiment with the viperine snake (Natrix maura, Linnaeus 1758). We maintained gravid females originating from low elevation populations (432 m above sea level [ASL]—normoxia) at both the elevation of origin and high elevation (2877 m ASL—extreme high elevation hypoxia; approximately 72% oxygen availability relative to sea level), then incubated egg clutches at both low and high elevation. Regardless of maternal exposure to hypoxia during gestation, embryos incubated at extreme high elevation exhibited altered developmental trajectories of cardiovascular function and metabolism across the incubation period, including a reduction in late-development egg mass. This physiological response may have contributed to the maintenance of similar incubation duration, hatching success, and hatchling body size compared to embryos incubated at low elevation. Nevertheless, after being maintained in hypoxia, juveniles exhibit reduced carbon dioxide production relative to oxygen consumption, suggesting altered energy pathways compared to juveniles maintained in normoxia. These findings highlight the role of physiological plasticity in maintaining rates of survival and fitness-relevant phenotypes in novel environments.
期刊介绍:
The Journal of Experimental Zoology – A publishes articles at the interface between Development, Physiology, Ecology and Evolution. Contributions that help to reveal how molecular, functional and ecological variation relate to one another are particularly welcome. The Journal publishes original research in the form of rapid communications or regular research articles, as well as perspectives and reviews on topics pertaining to the scope of the Journal. Acceptable articles are limited to studies on animals.