{"title":"Structural dynamics of chemokine receptors.","authors":"Shristi Pawnikar, Sana Akhter, Yinglong Miao","doi":"10.1016/bs.vh.2023.05.005","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane proteins such as G protein-coupled receptors (GPCRs) are involved in awide range of physiological and pathological cellular processes. Binding of extracellular signals to GPCRs, including hormones, neurotransmitters, peptides and proteins, can activate intracellular signaling cascades via G protein interaction. Chemokine receptors are key GPCRs implicated in cancers, immune responses, cell migration and inflammation. Specifically, the CCR5 and CXCR4 chemokine receptors serve as important therapeutic targets against Human Immunodeficiency virus (HIV) entry into human cells. Maraviroc and Vicriviroc, two clinically used HIV entry inhibitors, are antagonists of the CCR5 receptor. These drugs block HIV entry, but ultimately resistance develops, due to emergence of viruses that can utilize the CXCR4 co-receptor. Unfortunately, development of chemokine receptor antagonists as selective drugs of HIV infection has been greatly hindered as their target orthosteric site is conserved among different receptor subtypes. Accordingly, it is important to understand the structural dynamics of these receptors to develop more effective therapeutics. In this chapter, we describe the latest advances in studies of these two key chemokine receptors with respect to their structures, dynamics and function.</p>","PeriodicalId":51209,"journal":{"name":"Vitamins and Hormones","volume":"123 ","pages":"645-662"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vitamins and Hormones","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/bs.vh.2023.05.005","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/6/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Membrane proteins such as G protein-coupled receptors (GPCRs) are involved in awide range of physiological and pathological cellular processes. Binding of extracellular signals to GPCRs, including hormones, neurotransmitters, peptides and proteins, can activate intracellular signaling cascades via G protein interaction. Chemokine receptors are key GPCRs implicated in cancers, immune responses, cell migration and inflammation. Specifically, the CCR5 and CXCR4 chemokine receptors serve as important therapeutic targets against Human Immunodeficiency virus (HIV) entry into human cells. Maraviroc and Vicriviroc, two clinically used HIV entry inhibitors, are antagonists of the CCR5 receptor. These drugs block HIV entry, but ultimately resistance develops, due to emergence of viruses that can utilize the CXCR4 co-receptor. Unfortunately, development of chemokine receptor antagonists as selective drugs of HIV infection has been greatly hindered as their target orthosteric site is conserved among different receptor subtypes. Accordingly, it is important to understand the structural dynamics of these receptors to develop more effective therapeutics. In this chapter, we describe the latest advances in studies of these two key chemokine receptors with respect to their structures, dynamics and function.
期刊介绍:
First published in 1943, Vitamins and Hormones is the longest-running serial published by Academic Press. In the early days of the serial, the subjects of vitamins and hormones were quite distinct. The Editorial Board now reflects expertise in the field of hormone action, vitamin action, X-ray crystal structure, physiology, and enzyme mechanisms. Vitamins and Hormones continues to publish cutting-edge reviews of interest to endocrinologists, biochemists, nutritionists, pharmacologists, cell biologists, and molecular biologists. Others interested in the structure and function of biologically active molecules like hormones and vitamins will, as always, turn to this series for comprehensive reviews by leading contributors to this and related disciplines.