{"title":"Toward a Unified Theory of the Reference Frame of the Ventriloquism Aftereffect.","authors":"Peter Lokša, Norbert Kopčo","doi":"10.1177/23312165231201020","DOIUrl":null,"url":null,"abstract":"<p><p>The ventriloquism aftereffect (VAE), observed as a shift in the perceived locations of sounds after audio-visual stimulation, requires reference frame (RF) alignment since hearing and vision encode space in different RFs (head-centered vs. eye-centered). Previous experimental studies reported inconsistent results, observing either a mixture of head-centered and eye-centered frames, or a predominantly head-centered frame. Here, a computational model is introduced, examining the neural mechanisms underlying these effects. The basic model version assumes that the auditory spatial map is head-centered and the visual signals are converted to head-centered frame prior to inducing the adaptation. Two mechanisms are considered as extended model versions to describe the mixed-frame experimental data: (1) additional presence of visual signals in eye-centered frame and (2) eye-gaze direction-dependent attenuation in VAE when eyes shift away from the training fixation. Simulation results show that the mixed-frame results are mainly due to the second mechanism, suggesting that the RF of VAE is mainly head-centered. Additionally, a mechanism is proposed to explain a new ventriloquism-aftereffect-like phenomenon in which adaptation is induced by aligned audio-visual signals when saccades are used for responding to auditory targets. A version of the model extended to consider such response-method-related biases accurately predicts the new phenomenon. When attempting to model all the experimentally observed phenomena simultaneously, the model predictions are qualitatively similar but less accurate, suggesting that the proposed neural mechanisms interact in a more complex way than assumed in the model.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/ff/13/10.1177_23312165231201020.PMC10505348.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/23312165231201020","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The ventriloquism aftereffect (VAE), observed as a shift in the perceived locations of sounds after audio-visual stimulation, requires reference frame (RF) alignment since hearing and vision encode space in different RFs (head-centered vs. eye-centered). Previous experimental studies reported inconsistent results, observing either a mixture of head-centered and eye-centered frames, or a predominantly head-centered frame. Here, a computational model is introduced, examining the neural mechanisms underlying these effects. The basic model version assumes that the auditory spatial map is head-centered and the visual signals are converted to head-centered frame prior to inducing the adaptation. Two mechanisms are considered as extended model versions to describe the mixed-frame experimental data: (1) additional presence of visual signals in eye-centered frame and (2) eye-gaze direction-dependent attenuation in VAE when eyes shift away from the training fixation. Simulation results show that the mixed-frame results are mainly due to the second mechanism, suggesting that the RF of VAE is mainly head-centered. Additionally, a mechanism is proposed to explain a new ventriloquism-aftereffect-like phenomenon in which adaptation is induced by aligned audio-visual signals when saccades are used for responding to auditory targets. A version of the model extended to consider such response-method-related biases accurately predicts the new phenomenon. When attempting to model all the experimentally observed phenomena simultaneously, the model predictions are qualitatively similar but less accurate, suggesting that the proposed neural mechanisms interact in a more complex way than assumed in the model.
Trends in HearingAUDIOLOGY & SPEECH-LANGUAGE PATHOLOGYOTORH-OTORHINOLARYNGOLOGY
CiteScore
4.50
自引率
11.10%
发文量
44
审稿时长
12 weeks
期刊介绍:
Trends in Hearing is an open access journal completely dedicated to publishing original research and reviews focusing on human hearing, hearing loss, hearing aids, auditory implants, and aural rehabilitation. Under its former name, Trends in Amplification, the journal established itself as a forum for concise explorations of all areas of translational hearing research by leaders in the field. Trends in Hearing has now expanded its focus to include original research articles, with the goal of becoming the premier venue for research related to human hearing and hearing loss.