{"title":"Nanotechnology-based drug delivery for the treatment of CNS disorders.","authors":"Khushi R Mittal, Nandini Pharasi, Bhavya Sarna, Manisha Singh, Rachana, Shazia Haider, Sachin Kumar Singh, Kamal Dua, Saurabh Kumar Jha, Abhijit Dey, Shreesh Ojha, Shalini Mani, Niraj Kumar Jha","doi":"10.1515/tnsci-2022-0258","DOIUrl":null,"url":null,"abstract":"<p><p>Approximately 6.8 million people die annually because of problems related to the central nervous system (CNS), and out of them, approximately 1 million people are affected by neurodegenerative diseases that include Alzheimer's disease, multiple sclerosis, epilepsy, and Parkinson's disease. CNS problems are a primary concern because of the complexity of the brain. There are various drugs available to treat CNS disorders and overcome problems with toxicity, specificity, and delivery. Barriers like the blood-brain barrier (BBB) are a challenge, as they do not allow therapeutic drugs to cross and reach their target. Researchers have been searching for ways to allow drugs to pass through the BBB and reach the target sites. These problems highlight the need of nanotechnology to alter or manipulate various processes at the cellular level to achieve the desired attributes. Due to their nanosize, nanoparticles are able to pass through the BBB and are an effective alternative to drug administration and other approaches. Nanotechnology has the potential to improve treatment and diagnostic techniques for CNS disorders and facilitate effective drug transfer. With the aid of nanoengineering, drugs could be modified to perform functions like transference across the BBB, altering signaling pathways, targeting specific cells, effective gene transfer, and promoting regeneration and preservation of nerve cells. The involvement of a nanocarrier framework inside the delivery of several neurotherapeutic agents used in the treatment of neurological diseases is reviewed in this study.</p>","PeriodicalId":23227,"journal":{"name":"Translational Neuroscience","volume":"13 1","pages":"527-546"},"PeriodicalIF":1.8000,"publicationDate":"2022-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9883694/pdf/","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/tnsci-2022-0258","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 8
Abstract
Approximately 6.8 million people die annually because of problems related to the central nervous system (CNS), and out of them, approximately 1 million people are affected by neurodegenerative diseases that include Alzheimer's disease, multiple sclerosis, epilepsy, and Parkinson's disease. CNS problems are a primary concern because of the complexity of the brain. There are various drugs available to treat CNS disorders and overcome problems with toxicity, specificity, and delivery. Barriers like the blood-brain barrier (BBB) are a challenge, as they do not allow therapeutic drugs to cross and reach their target. Researchers have been searching for ways to allow drugs to pass through the BBB and reach the target sites. These problems highlight the need of nanotechnology to alter or manipulate various processes at the cellular level to achieve the desired attributes. Due to their nanosize, nanoparticles are able to pass through the BBB and are an effective alternative to drug administration and other approaches. Nanotechnology has the potential to improve treatment and diagnostic techniques for CNS disorders and facilitate effective drug transfer. With the aid of nanoengineering, drugs could be modified to perform functions like transference across the BBB, altering signaling pathways, targeting specific cells, effective gene transfer, and promoting regeneration and preservation of nerve cells. The involvement of a nanocarrier framework inside the delivery of several neurotherapeutic agents used in the treatment of neurological diseases is reviewed in this study.
期刊介绍:
Translational Neuroscience provides a closer interaction between basic and clinical neuroscientists to expand understanding of brain structure, function and disease, and translate this knowledge into clinical applications and novel therapies of nervous system disorders.