A comprehensive review and meta-analysis of recent advances in biotechnology for plant virus research and significant accomplishments in human health and the pharmaceutical industry.
IF 6.5 3区 工程技术Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
{"title":"A comprehensive review and meta-analysis of recent advances in biotechnology for plant virus research and significant accomplishments in human health and the pharmaceutical industry.","authors":"Sandip Debnath, Dibyendu Seth, Sourish Pramanik, Sanchari Adhikari, Parimita Mondal, Dechen Sherpa, Deepjyoti Sen, Dattatreya Mukherjee, Nobendu Mukerjee","doi":"10.1080/02648725.2022.2116309","DOIUrl":null,"url":null,"abstract":"<p><p>Secondary metabolites made by plants and used through their metabolic routes are today's most reliable and cost-effective way to make pharmaceuticals and improve health. The concept of genetic engineering is used for molecular pharming. As more people use plants as sources of nanotechnology systems, they are adding to this. These systems are made up of viruses-like particles (VLPs) and virus nanoparticles (VNPs). Due to their superior ability to be used as plant virus expression vectors, plant viruses are becoming more popular in pharmaceuticals. This has opened the door for them to be used in research, such as the production of medicinal peptides, antibodies, and other heterologous protein complexes. This is because biotechnological approaches have been linked with new bioinformatics tools. Because of the rise of high-throughput sequencing (HTS) and next-generation sequencing (NGS) techniques, it has become easier to use metagenomic studies to look for plant virus genomes that could be used in pharmaceutical research. A look at how bioinformatics can be used in pharmaceutical research is also covered in this article. It also talks about plant viruses and how new biotechnological tools and procedures have made progress in the field.</p>","PeriodicalId":55355,"journal":{"name":"Biotechnology & Genetic Engineering Reviews","volume":" ","pages":"3193-3225"},"PeriodicalIF":6.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology & Genetic Engineering Reviews","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/02648725.2022.2116309","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Secondary metabolites made by plants and used through their metabolic routes are today's most reliable and cost-effective way to make pharmaceuticals and improve health. The concept of genetic engineering is used for molecular pharming. As more people use plants as sources of nanotechnology systems, they are adding to this. These systems are made up of viruses-like particles (VLPs) and virus nanoparticles (VNPs). Due to their superior ability to be used as plant virus expression vectors, plant viruses are becoming more popular in pharmaceuticals. This has opened the door for them to be used in research, such as the production of medicinal peptides, antibodies, and other heterologous protein complexes. This is because biotechnological approaches have been linked with new bioinformatics tools. Because of the rise of high-throughput sequencing (HTS) and next-generation sequencing (NGS) techniques, it has become easier to use metagenomic studies to look for plant virus genomes that could be used in pharmaceutical research. A look at how bioinformatics can be used in pharmaceutical research is also covered in this article. It also talks about plant viruses and how new biotechnological tools and procedures have made progress in the field.
期刊介绍:
Biotechnology & Genetic Engineering Reviews publishes major invited review articles covering important developments in industrial, agricultural and medical applications of biotechnology.