Xiaoli Liu , Yangdong Liu , Wenjun Chai , Mingxia Yan , Hui Li , Jing Li , Lei Sun , Yue Cao , Qian Liu , Yuexi Sun , Hongyu Pan
{"title":"CDK12 loss inhibits cell proliferation by regulating TBK1 in non-small cell lung cancer cells","authors":"Xiaoli Liu , Yangdong Liu , Wenjun Chai , Mingxia Yan , Hui Li , Jing Li , Lei Sun , Yue Cao , Qian Liu , Yuexi Sun , Hongyu Pan","doi":"10.1016/j.mcp.2023.101923","DOIUrl":null,"url":null,"abstract":"<div><p>Lung cancer is one of the most common malignant tumors and has a poor prognosis and a low survival rate. Traditional treatments, such as radiotherapy and chemotherapy, still face some challenges because of high drug resistance and toxicity. Therefore, it is necessary to discover a new kind of targeted drug with low toxicity and high efficiency. CDK12 is a cell cycle-dependent kinase whose main function is to activate RNA polymerase II (RNAPII) and promote the transcriptional extension of RNA. However, the role and molecular mechanism of CDK12 in lung cancer are still unclear.</p><p>In this study, the mutation and RNA-Seq data of CDK12 in lung adenocarcinoma and squamous cell carcinoma were downloaded from The Cancer Genome Atlas (TCGA) database and analyzed with the custom scripts. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) and cell colony formation assays. A subcutaneous tumor experiment in nude mice was used to examine the effects of CDK12 knockdown on the in vivo tumor growth of NSCLC cells. The cell cycle distribution and the apoptosis rate of lung cancer cells were assessed by flow cytometry. Regulation of TANK-binding kinase 1 (TBK1) by CDK12 was evaluated by quantitative PCR, immunoprecipitation and Western blot analysis.</p><p>In this study we have analyzed the mutation and expression data of The Cancer Genome Atlas (TCGA) database and found that CDK12 is highly expressed in lung cancer tissues. Clinical correlation analysis showed that high expression of CDK12 in NSCLC reduces patient survival, but its high expression is only related to early tumor progression and has no significant correlation with late tumor progression and metastasis. Furthermore, we present evidence that CDK12 depletion in lung cancer cell lines not only leads to the inhibition of cell growth and induces apoptosis but also inhibits tumor growth of NSCLC cells in vivo. CDK12 positively regulates the expression of the oncogene TBK1 in lung cancer cells. These results revealed that CDK12 affects the progression of non-small cell lung cancer through positive regulation of TBK1 expression, suggesting that CDK12 might be a potential molecular target for the treatment of non-small cell lung cancer.</p></div>","PeriodicalId":49799,"journal":{"name":"Molecular and Cellular Probes","volume":"71 ","pages":"Article 101923"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Probes","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890850823000324","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Lung cancer is one of the most common malignant tumors and has a poor prognosis and a low survival rate. Traditional treatments, such as radiotherapy and chemotherapy, still face some challenges because of high drug resistance and toxicity. Therefore, it is necessary to discover a new kind of targeted drug with low toxicity and high efficiency. CDK12 is a cell cycle-dependent kinase whose main function is to activate RNA polymerase II (RNAPII) and promote the transcriptional extension of RNA. However, the role and molecular mechanism of CDK12 in lung cancer are still unclear.
In this study, the mutation and RNA-Seq data of CDK12 in lung adenocarcinoma and squamous cell carcinoma were downloaded from The Cancer Genome Atlas (TCGA) database and analyzed with the custom scripts. Cell proliferation was evaluated by Cell Counting Kit-8 (CCK-8) and cell colony formation assays. A subcutaneous tumor experiment in nude mice was used to examine the effects of CDK12 knockdown on the in vivo tumor growth of NSCLC cells. The cell cycle distribution and the apoptosis rate of lung cancer cells were assessed by flow cytometry. Regulation of TANK-binding kinase 1 (TBK1) by CDK12 was evaluated by quantitative PCR, immunoprecipitation and Western blot analysis.
In this study we have analyzed the mutation and expression data of The Cancer Genome Atlas (TCGA) database and found that CDK12 is highly expressed in lung cancer tissues. Clinical correlation analysis showed that high expression of CDK12 in NSCLC reduces patient survival, but its high expression is only related to early tumor progression and has no significant correlation with late tumor progression and metastasis. Furthermore, we present evidence that CDK12 depletion in lung cancer cell lines not only leads to the inhibition of cell growth and induces apoptosis but also inhibits tumor growth of NSCLC cells in vivo. CDK12 positively regulates the expression of the oncogene TBK1 in lung cancer cells. These results revealed that CDK12 affects the progression of non-small cell lung cancer through positive regulation of TBK1 expression, suggesting that CDK12 might be a potential molecular target for the treatment of non-small cell lung cancer.
期刊介绍:
MCP - Advancing biology through–omics and bioinformatic technologies wants to capture outcomes from the current revolution in molecular technologies and sciences. The journal has broadened its scope and embraces any high quality research papers, reviews and opinions in areas including, but not limited to, molecular biology, cell biology, biochemistry, immunology, physiology, epidemiology, ecology, virology, microbiology, parasitology, genetics, evolutionary biology, genomics (including metagenomics), bioinformatics, proteomics, metabolomics, glycomics, and lipidomics. Submissions with a technology-driven focus on understanding normal biological or disease processes as well as conceptual advances and paradigm shifts are particularly encouraged. The Editors welcome fundamental or applied research areas; pre-submission enquiries about advanced draft manuscripts are welcomed. Top quality research and manuscripts will be fast-tracked.