Jacob L. Beckham, Alexis R. van Venrooy, Soonyoung Kim, Gang Li, Bowen Li, Guillaume Duret, Dallin Arnold, Xuan Zhao, John T. Li, Ana L. Santos, Gautam Chaudhry, Dongdong Liu, Jacob T. Robinson, James M. Tour
{"title":"Molecular machines stimulate intercellular calcium waves and cause muscle contraction","authors":"Jacob L. Beckham, Alexis R. van Venrooy, Soonyoung Kim, Gang Li, Bowen Li, Guillaume Duret, Dallin Arnold, Xuan Zhao, John T. Li, Ana L. Santos, Gautam Chaudhry, Dongdong Liu, Jacob T. Robinson, James M. Tour","doi":"10.1038/s41565-023-01436-w","DOIUrl":null,"url":null,"abstract":"Intercellular calcium waves (ICW) are complex signalling phenomena that control many essential biological activities, including smooth muscle contraction, vesicle secretion, gene expression and changes in neuronal excitability. Accordingly, the remote stimulation of ICW could result in versatile biomodulation and therapeutic strategies. Here we demonstrate that light-activated molecular machines (MM)—molecules that perform mechanical work on the molecular scale—can remotely stimulate ICW. MM consist of a polycyclic rotor and stator that rotate around a central alkene when activated with visible light. Live-cell calcium-tracking and pharmacological experiments reveal that MM-induced ICW are driven by the activation of inositol-triphosphate-mediated signalling pathways by unidirectional, fast-rotating MM. Our data suggest that MM-induced ICW can control muscle contraction in vitro in cardiomyocytes and animal behaviour in vivo in Hydra vulgaris. This work demonstrates a strategy for directly controlling cell signalling and downstream biological function using molecular-scale devices. Intercellular calcium waves drive numerous biological processes. Here light-activated molecular machines that—via nanomechanical action—stimulate ICW are reported, opening up avenues for the modulation of downstream biological processes using molecular-scale devices.","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"18 9","pages":"1051-1059"},"PeriodicalIF":38.1000,"publicationDate":"2023-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41565-023-01436-w","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Intercellular calcium waves (ICW) are complex signalling phenomena that control many essential biological activities, including smooth muscle contraction, vesicle secretion, gene expression and changes in neuronal excitability. Accordingly, the remote stimulation of ICW could result in versatile biomodulation and therapeutic strategies. Here we demonstrate that light-activated molecular machines (MM)—molecules that perform mechanical work on the molecular scale—can remotely stimulate ICW. MM consist of a polycyclic rotor and stator that rotate around a central alkene when activated with visible light. Live-cell calcium-tracking and pharmacological experiments reveal that MM-induced ICW are driven by the activation of inositol-triphosphate-mediated signalling pathways by unidirectional, fast-rotating MM. Our data suggest that MM-induced ICW can control muscle contraction in vitro in cardiomyocytes and animal behaviour in vivo in Hydra vulgaris. This work demonstrates a strategy for directly controlling cell signalling and downstream biological function using molecular-scale devices. Intercellular calcium waves drive numerous biological processes. Here light-activated molecular machines that—via nanomechanical action—stimulate ICW are reported, opening up avenues for the modulation of downstream biological processes using molecular-scale devices.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.