{"title":"Effect on hypoxia/reoxygenation-induced cardiomyocyte injury and Pink1/Parkin pathway.","authors":"Xiyang Lu, Guangwei Huang, Hailong Bao, Zonggang Duan, Chao Li, Muzhi Lin, Haiyan Zhou, Zhenhua Luo, Wei Li","doi":"10.4149/gpb_2022045","DOIUrl":null,"url":null,"abstract":"<p><p>Our study aimed to detect the effects of proprotein convertase subtilisin/kexin type 9 (PCSK9) on exacerbating cardiomyocyte hypoxia/reoxygenation (H/R) injury and the possible mechanism. A cell model of H/R was constructed. PCSK9 mRNA and protein levels were significantly upregulated during AC16 cardiomyocyte H/R. Flowmetry detection of apoptosis, as well as JC-1, confirmed that PCSK9 upregulation of autophagy levels was accompanied by apoptosis. Furthermore, in the H/R+si-PCSK9 group, the expression of autophagy-related protein LC3 decreased and P62 increased. At the same time, the presentation of the autophagic pathway Pink1/Parkin was also downregulated. In conclusion, in AC16 cardiomyocytes treated with H/R, PCSK9 expression and autophagy levels were increased; a possible molecular mechanism was the activation of the Pink1/Parkin pathway.</p>","PeriodicalId":12514,"journal":{"name":"General physiology and biophysics","volume":"42 1","pages":"87-95"},"PeriodicalIF":1.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"General physiology and biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.4149/gpb_2022045","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Our study aimed to detect the effects of proprotein convertase subtilisin/kexin type 9 (PCSK9) on exacerbating cardiomyocyte hypoxia/reoxygenation (H/R) injury and the possible mechanism. A cell model of H/R was constructed. PCSK9 mRNA and protein levels were significantly upregulated during AC16 cardiomyocyte H/R. Flowmetry detection of apoptosis, as well as JC-1, confirmed that PCSK9 upregulation of autophagy levels was accompanied by apoptosis. Furthermore, in the H/R+si-PCSK9 group, the expression of autophagy-related protein LC3 decreased and P62 increased. At the same time, the presentation of the autophagic pathway Pink1/Parkin was also downregulated. In conclusion, in AC16 cardiomyocytes treated with H/R, PCSK9 expression and autophagy levels were increased; a possible molecular mechanism was the activation of the Pink1/Parkin pathway.
期刊介绍:
General Physiology and Biophysics is devoted to the publication of original research papers concerned with general physiology, biophysics and biochemistry at the cellular and molecular level and is published quarterly by the Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences.