{"title":"Interferon Regulatory Factor 4 (IRF4) Promotes Lipopolysaccharide-Induced Colonic Mucosal Epithelial Cell Proliferation by Regulating Macrophage Polarization.","authors":"Lin Hu, Song Li, Honglang Li, Bin Lai, Huabin Wen","doi":"10.1159/000525753","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the mucosa of colon and rectum. Interferon regulatory factor 4 (IRF4) mediates macrophage anti-inflammatory phenotype (alternatively activated macrophages [M2]). This study aimed to investigate the mechanism of IRF4 in lipopolysaccharide (LPS)-induced colonic mucosal epithelial cell proliferation via the regulation of macrophage polarization.</p><p><strong>Methods: </strong>Human bone marrow-derived macrophages were subjected to interleukin 4 (IL-4) induction. M2 macrophages were identified using flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). IRF4 expression in M2 macrophages was detected using Western blot and qRT-PCR. IRF4 expression was silenced in M2 macrophages. IL-10 mRNA expression and protein level were detected using qRT-PCR and Western blot. The binding relation between IRF4 and IL-10 was verified using dual-luciferase and chromatin immunoprecipitation assays. Macrophages under different treatments were cocultured with LPS-induced human colonic mucosal epithelial cells. The levels of inflammatory factors (TNF-α, IL-6, and IL-1β) were detected using enzyme-linked immunosorbent assay. The proliferation of inflammatory cells was measured using Cell Counting Kit-8 assay, and the healing of inflammatory cells was detected using wound healing assay.</p><p><strong>Results: </strong>M2 macrophages alleviated LPS-induced inflammatory responses. IRF4 bound to IL-10 and promoted IL-10 expression. Inhibition of IRF4 reduced IL-10 expression and attenuated the alleviating effect of M2 macrophages on inflammatory responses. Inhibition of IRF4 combined with IL-10 overexpression enhanced the promoting effect of M2 macrophages on inflammatory healing.</p><p><strong>Conclusion: </strong>IRF4 promoted colonic mucosal epithelial cell proliferation by increasing IL-10 expression and regulating macrophage polarization to M2 phenotype, which might be related to UC mucosal healing.</p>","PeriodicalId":12222,"journal":{"name":"European Surgical Research","volume":"63 4","pages":"257-268"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Surgical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000525753","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 3
Abstract
Introduction: Ulcerative colitis (UC) is a chronic disease characterized by diffuse inflammation of the mucosa of colon and rectum. Interferon regulatory factor 4 (IRF4) mediates macrophage anti-inflammatory phenotype (alternatively activated macrophages [M2]). This study aimed to investigate the mechanism of IRF4 in lipopolysaccharide (LPS)-induced colonic mucosal epithelial cell proliferation via the regulation of macrophage polarization.
Methods: Human bone marrow-derived macrophages were subjected to interleukin 4 (IL-4) induction. M2 macrophages were identified using flow cytometry and quantitative real-time polymerase chain reaction (qRT-PCR). IRF4 expression in M2 macrophages was detected using Western blot and qRT-PCR. IRF4 expression was silenced in M2 macrophages. IL-10 mRNA expression and protein level were detected using qRT-PCR and Western blot. The binding relation between IRF4 and IL-10 was verified using dual-luciferase and chromatin immunoprecipitation assays. Macrophages under different treatments were cocultured with LPS-induced human colonic mucosal epithelial cells. The levels of inflammatory factors (TNF-α, IL-6, and IL-1β) were detected using enzyme-linked immunosorbent assay. The proliferation of inflammatory cells was measured using Cell Counting Kit-8 assay, and the healing of inflammatory cells was detected using wound healing assay.
Results: M2 macrophages alleviated LPS-induced inflammatory responses. IRF4 bound to IL-10 and promoted IL-10 expression. Inhibition of IRF4 reduced IL-10 expression and attenuated the alleviating effect of M2 macrophages on inflammatory responses. Inhibition of IRF4 combined with IL-10 overexpression enhanced the promoting effect of M2 macrophages on inflammatory healing.
Conclusion: IRF4 promoted colonic mucosal epithelial cell proliferation by increasing IL-10 expression and regulating macrophage polarization to M2 phenotype, which might be related to UC mucosal healing.
期刊介绍:
''European Surgical Research'' features original clinical and experimental papers, condensed reviews of new knowledge relevant to surgical research, and short technical notes serving the information needs of investigators in various fields of operative medicine. Coverage includes surgery, surgical pathophysiology, drug usage, and new surgical techniques. Special consideration is given to information on the use of animal models, physiological and biological methods as well as biophysical measuring and recording systems. The journal is of particular value for workers interested in pathophysiologic concepts, new techniques and in how these can be introduced into clinical work or applied when critical decisions are made concerning the use of new procedures or drugs.