Nur77-Tempo mice reveal T cell steady state antigen recognition.

Thomas A E Elliot, Emma K Jennings, David A J Lecky, Sophie Rouvray, Gillian M Mackie, Lisa Scarfe, Lozan Sheriff, Masahiro Ono, Kendle M Maslowski, David Bending
{"title":"Nur77-Tempo mice reveal T cell steady state antigen recognition.","authors":"Thomas A E Elliot,&nbsp;Emma K Jennings,&nbsp;David A J Lecky,&nbsp;Sophie Rouvray,&nbsp;Gillian M Mackie,&nbsp;Lisa Scarfe,&nbsp;Lozan Sheriff,&nbsp;Masahiro Ono,&nbsp;Kendle M Maslowski,&nbsp;David Bending","doi":"10.1093/discim/kyac009","DOIUrl":null,"url":null,"abstract":"<p><p>In lymphocytes, <i>Nr4a</i> gene expression is specifically regulated by antigen receptor signalling, making them ideal targets for use as distal T cell receptor (TCR) reporters. <i>Nr4a3</i>-Timer of cell kinetics and activity (Tocky) mice are a ground-breaking tool to report TCR-driven <i>Nr4a3</i> expression using Fluorescent Timer protein (FT). FT undergoes a time-dependent shift in its emission spectrum following translation, allowing for the temporal reporting of transcriptional events. Our recent work suggested that <i>Nr4a1</i>/Nur77 may be a more sensitive gene to distal TCR signals compared to <i>Nr4a3</i>, so we, therefore, generated Nur77-Timer-rapidly-expressed-in-lymphocytes (Tempo) mice that express FT under the regulation of Nur77. We validated the ability of Nur77-Tempo mice to report TCR and B cell receptor signals and investigated the signals regulating Nur77-FT expression. We found that Nur77-FT was sensitive to low-strength TCR signals, and its brightness was graded in response to TCR signal strength. Nur77-FT detected positive selection signals in the thymus, and analysis of FT expression revealed that positive selection signals are often persistent in nature, with most thymic Treg expressing FT Blue. We found that active TCR signals in the spleen are low frequency, but CD69<sup>+</sup> lymphoid T cells are enriched for FT Blue<sup>+</sup> Red<sup>+</sup> T cells, suggesting frequent TCR signalling. In non-lymphoid tissue, we saw a dissociation of FT protein from CD69 expression, indicating that tissue residency is not associated with tonic TCR signals. Nur77-Tempo mice, therefore, combine the temporal dynamics from the Tocky innovation with increased sensitivity of <i>Nr4a1</i> to lower TCR signal strengths.</p>","PeriodicalId":72830,"journal":{"name":"Discovery immunology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7614040/pdf/","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discovery immunology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/discim/kyac009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In lymphocytes, Nr4a gene expression is specifically regulated by antigen receptor signalling, making them ideal targets for use as distal T cell receptor (TCR) reporters. Nr4a3-Timer of cell kinetics and activity (Tocky) mice are a ground-breaking tool to report TCR-driven Nr4a3 expression using Fluorescent Timer protein (FT). FT undergoes a time-dependent shift in its emission spectrum following translation, allowing for the temporal reporting of transcriptional events. Our recent work suggested that Nr4a1/Nur77 may be a more sensitive gene to distal TCR signals compared to Nr4a3, so we, therefore, generated Nur77-Timer-rapidly-expressed-in-lymphocytes (Tempo) mice that express FT under the regulation of Nur77. We validated the ability of Nur77-Tempo mice to report TCR and B cell receptor signals and investigated the signals regulating Nur77-FT expression. We found that Nur77-FT was sensitive to low-strength TCR signals, and its brightness was graded in response to TCR signal strength. Nur77-FT detected positive selection signals in the thymus, and analysis of FT expression revealed that positive selection signals are often persistent in nature, with most thymic Treg expressing FT Blue. We found that active TCR signals in the spleen are low frequency, but CD69+ lymphoid T cells are enriched for FT Blue+ Red+ T cells, suggesting frequent TCR signalling. In non-lymphoid tissue, we saw a dissociation of FT protein from CD69 expression, indicating that tissue residency is not associated with tonic TCR signals. Nur77-Tempo mice, therefore, combine the temporal dynamics from the Tocky innovation with increased sensitivity of Nr4a1 to lower TCR signal strengths.

Abstract Image

Abstract Image

Abstract Image

Nur77-Tempo小鼠显示T细胞稳态抗原识别。
在淋巴细胞中,Nr4a基因表达受抗原受体信号传导的特异性调节,使其成为远端T细胞受体(TCR)报告者的理想靶标。细胞动力学和活性(Tocky)小鼠的Nr4a3定时器是使用荧光定时器蛋白(FT)报告tcr驱动的Nr4a3表达的突破性工具。FT在翻译后的发射光谱中经历了时间相关的变化,从而允许转录事件的时间报告。我们最近的研究表明,与Nr4a3相比,Nr4a1/Nur77可能是对远端TCR信号更敏感的基因,因此,我们在Nur77的调控下产生了表达FT的Nur77- timer -rapid - expressin -淋巴细胞(Tempo)小鼠。我们验证了Nur77-Tempo小鼠报告TCR和B细胞受体信号的能力,并研究了调节Nur77-FT表达的信号。我们发现Nur77-FT对低强度的TCR信号敏感,其亮度随TCR信号强度而分级。Nur77-FT在胸腺中检测到阳性选择信号,FT表达分析表明,阳性选择信号在自然界中往往是持续性的,大多数胸腺Treg表达FT Blue。我们发现脾脏中活跃的TCR信号频率较低,但CD69+淋巴样T细胞富集FT Blue+ Red+ T细胞,提示TCR信号频繁。在非淋巴组织中,我们发现FT蛋白与CD69表达分离,表明组织驻留与强直性TCR信号无关。因此,Nur77-Tempo小鼠将Tocky创新的时间动态与Nr4a1对较低TCR信号强度的敏感性增加结合起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信