{"title":"A Prediction Model for Normal Variation of Somatosensory Evoked Potential During Scoliosis Surgery.","authors":"Ningbo Fei, Rong Li, Hongyan Cui, Yong Hu","doi":"10.1142/S0129065723500053","DOIUrl":null,"url":null,"abstract":"<p><p>Somatosensory evoked potential (SEP) has been commonly used as intraoperative monitoring to detect the presence of neurological deficits during scoliosis surgery. However, SEP usually presents an enormous variation in response to patient-specific factors such as physiological parameters leading to the false warning. This study proposes a prediction model to quantify SEP amplitude variation due to noninjury-related physiological changes of the patient undergoing scoliosis surgery. Based on a hybrid network of attention-based long-short-term memory (LSTM) and convolutional neural networks (CNNs), we develop a deep learning-based framework for predicting the SEP value in response to variation of physiological variables. The training and selection of model parameters were based on a 5-fold cross-validation scheme using mean square error (MSE) as evaluation metrics. The proposed model obtained MSE of 0.027[Formula: see text][Formula: see text] on left cortical SEP, MSE of 0.024[Formula: see text][Formula: see text] on left subcortical SEP, MSE of 0.031[Formula: see text][Formula: see text] on right cortical SEP, and MSE of 0.025[Formula: see text][Formula: see text] on right subcortical SEP based on the test set. The proposed model could quantify the affection from physiological parameters to the SEP amplitude in response to normal variation of physiology during scoliosis surgery. The prediction of SEP amplitude provides a potential varying reference for intraoperative SEP monitoring.</p>","PeriodicalId":50305,"journal":{"name":"International Journal of Neural Systems","volume":"33 2","pages":"2350005"},"PeriodicalIF":6.6000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0129065723500053","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Somatosensory evoked potential (SEP) has been commonly used as intraoperative monitoring to detect the presence of neurological deficits during scoliosis surgery. However, SEP usually presents an enormous variation in response to patient-specific factors such as physiological parameters leading to the false warning. This study proposes a prediction model to quantify SEP amplitude variation due to noninjury-related physiological changes of the patient undergoing scoliosis surgery. Based on a hybrid network of attention-based long-short-term memory (LSTM) and convolutional neural networks (CNNs), we develop a deep learning-based framework for predicting the SEP value in response to variation of physiological variables. The training and selection of model parameters were based on a 5-fold cross-validation scheme using mean square error (MSE) as evaluation metrics. The proposed model obtained MSE of 0.027[Formula: see text][Formula: see text] on left cortical SEP, MSE of 0.024[Formula: see text][Formula: see text] on left subcortical SEP, MSE of 0.031[Formula: see text][Formula: see text] on right cortical SEP, and MSE of 0.025[Formula: see text][Formula: see text] on right subcortical SEP based on the test set. The proposed model could quantify the affection from physiological parameters to the SEP amplitude in response to normal variation of physiology during scoliosis surgery. The prediction of SEP amplitude provides a potential varying reference for intraoperative SEP monitoring.
期刊介绍:
The International Journal of Neural Systems is a monthly, rigorously peer-reviewed transdisciplinary journal focusing on information processing in both natural and artificial neural systems. Special interests include machine learning, computational neuroscience and neurology. The journal prioritizes innovative, high-impact articles spanning multiple fields, including neurosciences and computer science and engineering. It adopts an open-minded approach to this multidisciplinary field, serving as a platform for novel ideas and enhanced understanding of collective and cooperative phenomena in computationally capable systems.