Misoriented high-entropy iridium ruthenium oxide for acidic water splitting

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chun Hu, Kaihang Yue, Jiajia Han, Xiaozhi Liu, Lijia Liu, Qiunan Liu, Qingyu Kong, Chih-Wen Pao, Zhiwei Hu, Kazu Suenaga, Dong Su, Qiaobao Zhang, Xianying Wang, Yuanzhi Tan, Xiaoqing Huang
{"title":"Misoriented high-entropy iridium ruthenium oxide for acidic water splitting","authors":"Chun Hu,&nbsp;Kaihang Yue,&nbsp;Jiajia Han,&nbsp;Xiaozhi Liu,&nbsp;Lijia Liu,&nbsp;Qiunan Liu,&nbsp;Qingyu Kong,&nbsp;Chih-Wen Pao,&nbsp;Zhiwei Hu,&nbsp;Kazu Suenaga,&nbsp;Dong Su,&nbsp;Qiaobao Zhang,&nbsp;Xianying Wang,&nbsp;Yuanzhi Tan,&nbsp;Xiaoqing Huang","doi":"10.1126/sciadv.adf9144","DOIUrl":null,"url":null,"abstract":"<div >Designing an efficient catalyst for acidic oxygen evolution reaction (OER) is of critical importance in manipulating proton exchange membrane water electrolyzer (PEMWE) for hydrogen production. Here, we report a fast, nonequilibrium strategy to synthesize quinary high-entropy ruthenium iridium-based oxide (M-RuIrFeCoNiO<sub>2</sub>) with abundant grain boundaries (GB), which exhibits a low overpotential of 189 millivolts at 10 milliamperes per square centimeter for OER in 0.5 M H<sub>2</sub>SO<sub>4</sub>. Microstructural analyses, density functional calculations, and isotope-labeled differential electrochemical mass spectroscopy measurements collectively reveal that the integration of foreign metal elements and GB is responsible for the enhancement of activity and stability of RuO<sub>2</sub> toward OER. A PEMWE using M-RuIrFeCoNiO<sub>2</sub> catalyst can steadily operate at a large current density of 1 ampere per square centimeter for over 500 hours. This work demonstrates a pathway to design high-performance OER electrocatalysts by integrating the advantages of various components and GB, which breaks the limits of thermodynamic solubility for different metal elements.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"9 37","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2023-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adf9144","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adf9144","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Designing an efficient catalyst for acidic oxygen evolution reaction (OER) is of critical importance in manipulating proton exchange membrane water electrolyzer (PEMWE) for hydrogen production. Here, we report a fast, nonequilibrium strategy to synthesize quinary high-entropy ruthenium iridium-based oxide (M-RuIrFeCoNiO2) with abundant grain boundaries (GB), which exhibits a low overpotential of 189 millivolts at 10 milliamperes per square centimeter for OER in 0.5 M H2SO4. Microstructural analyses, density functional calculations, and isotope-labeled differential electrochemical mass spectroscopy measurements collectively reveal that the integration of foreign metal elements and GB is responsible for the enhancement of activity and stability of RuO2 toward OER. A PEMWE using M-RuIrFeCoNiO2 catalyst can steadily operate at a large current density of 1 ampere per square centimeter for over 500 hours. This work demonstrates a pathway to design high-performance OER electrocatalysts by integrating the advantages of various components and GB, which breaks the limits of thermodynamic solubility for different metal elements.

Abstract Image

用于酸性水分离的多熵高铱钌氧化物
设计一种用于酸性氧进化反应(OER)的高效催化剂对于质子交换膜水电解槽(PEMWE)制氢至关重要。在此,我们报告了一种快速、非平衡策略,用于合成具有丰富晶界(GB)的二元高熵钌铱基氧化物(M-RuIrFeCoNiO2),该氧化物在 0.5 M H2SO4 中进行 OER 反应时,过电势较低,在 10 毫安/平方厘米时为 189 毫伏。微结构分析、密度泛函计算和同位素标记的差分电化学质谱测量共同揭示了外来金属元素与 GB 的结合是提高 RuO2 对 OER 的活性和稳定性的原因。使用 M-RuIrFeCoNiO2 催化剂的 PEMWE 可在每平方厘米 1 安培的大电流密度下稳定运行 500 小时以上。这项工作展示了通过整合各种成分和国标的优势来设计高性能 OER 电催化剂的途径,打破了不同金属元素热力学溶解度的限制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信