Optimized solubility and bioavailability of genistein based on cocrystal engineering

IF 4.8 3区 化学 Q1 CHEMISTRY, MEDICINAL
Zhipeng Wang, Qi Li, Qi An, Lixiang Gong, Shiying Yang, Baoxi Zhang, Bin Su, Dezhi Yang, Li Zhang, Yang Lu, Guanhua Du
{"title":"Optimized solubility and bioavailability of genistein based on cocrystal engineering","authors":"Zhipeng Wang,&nbsp;Qi Li,&nbsp;Qi An,&nbsp;Lixiang Gong,&nbsp;Shiying Yang,&nbsp;Baoxi Zhang,&nbsp;Bin Su,&nbsp;Dezhi Yang,&nbsp;Li Zhang,&nbsp;Yang Lu,&nbsp;Guanhua Du","doi":"10.1007/s13659-023-00397-w","DOIUrl":null,"url":null,"abstract":"<div><p>With various potential health-promoting bioactivities, genistein has great prospects in treatment of a series of complex diseases and metabolic syndromes such as cancer, diabetes, cardiovascular diseases, menopausal symptoms and so on. However, poor solubility and unsatisfactory bioavailability seriously limits its clinical application and market development. To optimize the solubility and bioavailability of genistein, the cocrystal of genistein and piperazine was prepared by grinding assisted with solvent based on the concept of cocrystal engineering. Using a series of analytical techniques including single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis, the cocrystal was characterized and confirmed. Then, structure analysis on the basis of theoretical calculation and a series of evaluation on the stability, dissolution and bioavailability were carried out. The results indicated that the cocrystal of genistein and piperazine improved the solubility and bioavailability of genistein. Compared with the previous studies on the cocrystal of genistein, this is a systematic and comprehensive investigation from the aspects of preparation, characterization, structural analysis, stability, solubility and bioavailability evaluation. As a simple, efficient and green approach, cocrystal engineering can pave a new path to optimize the pharmaceutical properties of natural products for successful drug formulation and delivery.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":718,"journal":{"name":"Natural Products and Bioprospecting","volume":"13 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10499772/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Products and Bioprospecting","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13659-023-00397-w","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

With various potential health-promoting bioactivities, genistein has great prospects in treatment of a series of complex diseases and metabolic syndromes such as cancer, diabetes, cardiovascular diseases, menopausal symptoms and so on. However, poor solubility and unsatisfactory bioavailability seriously limits its clinical application and market development. To optimize the solubility and bioavailability of genistein, the cocrystal of genistein and piperazine was prepared by grinding assisted with solvent based on the concept of cocrystal engineering. Using a series of analytical techniques including single-crystal X-ray diffraction, powder X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry and thermogravimetric analysis, the cocrystal was characterized and confirmed. Then, structure analysis on the basis of theoretical calculation and a series of evaluation on the stability, dissolution and bioavailability were carried out. The results indicated that the cocrystal of genistein and piperazine improved the solubility and bioavailability of genistein. Compared with the previous studies on the cocrystal of genistein, this is a systematic and comprehensive investigation from the aspects of preparation, characterization, structural analysis, stability, solubility and bioavailability evaluation. As a simple, efficient and green approach, cocrystal engineering can pave a new path to optimize the pharmaceutical properties of natural products for successful drug formulation and delivery.

Graphical Abstract

Abstract Image

Abstract Image

Abstract Image

基于共晶工程优化染料木素的溶解度和生物利用度。
染料木素具有多种潜在的促进健康的生物活性,在治疗癌症、糖尿病、心血管疾病、更年期症状等一系列复杂疾病和代谢综合征方面具有广阔的前景。但其溶解度差、生物利用度差等问题严重限制了其临床应用和市场开发。为了优化染料木黄酮的溶解度和生物利用度,基于共晶工程的概念,采用溶剂辅助研磨法制备染料木黄酮与哌嗪共晶。利用单晶x射线衍射、粉末x射线衍射、傅里叶变换红外光谱、差示扫描量热法和热重分析等一系列分析技术,对共晶进行了表征和确认。然后,在理论计算的基础上进行了结构分析,并对其稳定性、溶出度和生物利用度进行了一系列评价。结果表明,染料木黄酮与哌嗪共晶提高了染料木黄酮的溶解度和生物利用度。与以往对染料木黄酮共晶的研究相比,本文从制备、表征、结构分析、稳定性、溶解度和生物利用度评价等方面进行了系统、全面的研究。共晶工程作为一种简单、高效、绿色的方法,为优化天然产物的药性,为药物的成功配制和给药开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Natural Products and Bioprospecting
Natural Products and Bioprospecting CHEMISTRY, MEDICINAL-
CiteScore
8.30
自引率
2.10%
发文量
39
审稿时长
13 weeks
期刊介绍: Natural Products and Bioprospecting serves as an international forum for essential research on natural products and focuses on, but is not limited to, the following aspects: Natural products: isolation and structure elucidation Natural products: synthesis Biological evaluation of biologically active natural products Bioorganic and medicinal chemistry Biosynthesis and microbiological transformation Fermentation and plant tissue cultures Bioprospecting of natural products from natural resources All research articles published in this journal have undergone rigorous peer review. In addition to original research articles, Natural Products and Bioprospecting publishes reviews and short communications, aiming to rapidly disseminate the research results of timely interest, and comprehensive reviews of emerging topics in all the areas of natural products. It is also an open access journal, which provides free access to its articles to anyone, anywhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信