Comparative transcriptomic analysis of rabbit interscapular brown adipose tissue whitening under physiological conditions.

IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM
Lei Li, Qian Wan, Qiaoyun Long, Tao Nie, Shiting Zhao, Liufeng Mao, Chuanli Cheng, Chao Zou, Kerry Loomes, Aimin Xu, Liangxue Lai, Xin Liu, Ziyuan Duan, Xiaoyan Hui, Donghai Wu
{"title":"Comparative transcriptomic analysis of rabbit interscapular brown adipose tissue whitening under physiological conditions.","authors":"Lei Li,&nbsp;Qian Wan,&nbsp;Qiaoyun Long,&nbsp;Tao Nie,&nbsp;Shiting Zhao,&nbsp;Liufeng Mao,&nbsp;Chuanli Cheng,&nbsp;Chao Zou,&nbsp;Kerry Loomes,&nbsp;Aimin Xu,&nbsp;Liangxue Lai,&nbsp;Xin Liu,&nbsp;Ziyuan Duan,&nbsp;Xiaoyan Hui,&nbsp;Donghai Wu","doi":"10.1080/21623945.2022.2111053","DOIUrl":null,"url":null,"abstract":"<p><p>Interscapular brown adipose tissue (iBAT) of both rabbits and humans exhibits a similar whitening phenomenon under physiological conditions. However, a detailed characterization of iBAT whitening in them is still lacking. Here, we chose rabbits as a model to gain a better understanding of the molecular signature changes during the whitening process of iBAT by transcriptomic analysis of rabbit iBAT at day 1, day 14, 1 month and 4 months after birth. We applied non-invasive MRI imaging to monitor the whitening process and correlated these changes with analysis of morphological, histological and molecular features. Principal component analysis (PCA) of differentially expressed genes delineated three major phases for the whitening process as Brown, Transition and Whitened BAT phases. RNA-sequencing data revealed that whitening of iBAT was an orchestrated process where multiple types of cells and tissues participated in a variety of physiological processes including neovascularization, formation of new nervous networks and immune regulation. Several key metabolic and signalling pathways contributed to whitening of iBAT, and immune cells and immune regulation appeared to play an overarching role.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"11 1","pages":"529-549"},"PeriodicalIF":3.5000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427046/pdf/","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2022.2111053","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 2

Abstract

Interscapular brown adipose tissue (iBAT) of both rabbits and humans exhibits a similar whitening phenomenon under physiological conditions. However, a detailed characterization of iBAT whitening in them is still lacking. Here, we chose rabbits as a model to gain a better understanding of the molecular signature changes during the whitening process of iBAT by transcriptomic analysis of rabbit iBAT at day 1, day 14, 1 month and 4 months after birth. We applied non-invasive MRI imaging to monitor the whitening process and correlated these changes with analysis of morphological, histological and molecular features. Principal component analysis (PCA) of differentially expressed genes delineated three major phases for the whitening process as Brown, Transition and Whitened BAT phases. RNA-sequencing data revealed that whitening of iBAT was an orchestrated process where multiple types of cells and tissues participated in a variety of physiological processes including neovascularization, formation of new nervous networks and immune regulation. Several key metabolic and signalling pathways contributed to whitening of iBAT, and immune cells and immune regulation appeared to play an overarching role.

Abstract Image

Abstract Image

Abstract Image

生理条件下兔肩胛间褐色脂肪组织变白的比较转录组学分析。
兔和人的肩胛间棕色脂肪组织(iBAT)在生理条件下都表现出相似的增白现象。然而,目前还缺乏对iBAT白化的详细描述。本研究选择家兔作为模型,通过对家兔出生后第1天、第14天、第1个月和第4个月的iBAT进行转录组学分析,更好地了解iBAT美白过程中的分子特征变化。我们应用无创MRI成像技术监测白化过程,并将这些变化与形态学、组织学和分子特征分析相关联。差异表达基因主成分分析(PCA)将白化过程划分为褐化、过渡和白化BAT三个主要阶段。rna测序数据显示,iBAT的增白是一个协调的过程,多种类型的细胞和组织参与了多种生理过程,包括新生血管、新神经网络的形成和免疫调节。几个关键的代谢和信号通路有助于iBAT的增白,免疫细胞和免疫调节似乎起着重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Adipocyte
Adipocyte Medicine-Histology
CiteScore
6.50
自引率
3.00%
发文量
46
审稿时长
32 weeks
期刊介绍: Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信