Mouse-human species differences in early testicular development and its implications

IF 2.2 3区 生物学 Q4 CELL BIOLOGY
Gerald R. Cunha , Mei Cao , Sena Aksel , Amber Derpinghaus , Laurence S. Baskin
{"title":"Mouse-human species differences in early testicular development and its implications","authors":"Gerald R. Cunha ,&nbsp;Mei Cao ,&nbsp;Sena Aksel ,&nbsp;Amber Derpinghaus ,&nbsp;Laurence S. Baskin","doi":"10.1016/j.diff.2022.04.002","DOIUrl":null,"url":null,"abstract":"<div><p>The mouse has been used as a model of human organogenesis with the tacit assumption that morphogenetic and molecular mechanisms in mice are translatable to human organogenesis. While many morphogenetic and molecular mechanisms are shared in mice and humans, many anatomic, morphogenetic, and molecular differences have been noted. Two critical gaps in our knowledge prevent meaningful comparisons of mouse versus human testicular development: (a) human testicular development is profoundly under-represented in the literature, and (b) an absence of a detailed day-by-day ontogeny of mouse testicular development from E11.5 to E16.5 encompassing the ambisexual stage to seminiferous cord formation. To address these deficiencies, histologic and immunohistochemical studies were pursued in comparable stages of mouse and human testicular development with a particular emphasis on Leydig, Sertoli and myoid cells through review of the literature and new observations. For example, an androgen-receptor-positive testicular medulla is present in the developing human testis but not in the developing mouse testis. The human testicular medulla and associated mesonephros were historically described as the source of Sertoli cells in seminiferous cords. Consistent with this idea, the profoundly androgen receptor (AR)-positive human testicular medulla was shown to be a zone of mesenchymal to epithelial transition and a zone from which AR-positive cells appear to migrate into the human testicular cortex. While mouse Sertoli and Leydig cells have been proposed to arise from coelomic epithelium, Sertoli (SOX9) or Leydig (HSD3B1) cell markers are absent from the immediate coelomic zone of the developing human testis, perhaps because Leydig and Sertoli cell precursors are undifferentiated when they egress from the coelomic epithelium. The origin of mouse and human myoid cells remains unclear. This study provides a detailed comparison of the early stages of testicular development in human and mouse emphasizing differences in developmental processes.</p></div>","PeriodicalId":50579,"journal":{"name":"Differentiation","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differentiation","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030146812200041X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

The mouse has been used as a model of human organogenesis with the tacit assumption that morphogenetic and molecular mechanisms in mice are translatable to human organogenesis. While many morphogenetic and molecular mechanisms are shared in mice and humans, many anatomic, morphogenetic, and molecular differences have been noted. Two critical gaps in our knowledge prevent meaningful comparisons of mouse versus human testicular development: (a) human testicular development is profoundly under-represented in the literature, and (b) an absence of a detailed day-by-day ontogeny of mouse testicular development from E11.5 to E16.5 encompassing the ambisexual stage to seminiferous cord formation. To address these deficiencies, histologic and immunohistochemical studies were pursued in comparable stages of mouse and human testicular development with a particular emphasis on Leydig, Sertoli and myoid cells through review of the literature and new observations. For example, an androgen-receptor-positive testicular medulla is present in the developing human testis but not in the developing mouse testis. The human testicular medulla and associated mesonephros were historically described as the source of Sertoli cells in seminiferous cords. Consistent with this idea, the profoundly androgen receptor (AR)-positive human testicular medulla was shown to be a zone of mesenchymal to epithelial transition and a zone from which AR-positive cells appear to migrate into the human testicular cortex. While mouse Sertoli and Leydig cells have been proposed to arise from coelomic epithelium, Sertoli (SOX9) or Leydig (HSD3B1) cell markers are absent from the immediate coelomic zone of the developing human testis, perhaps because Leydig and Sertoli cell precursors are undifferentiated when they egress from the coelomic epithelium. The origin of mouse and human myoid cells remains unclear. This study provides a detailed comparison of the early stages of testicular development in human and mouse emphasizing differences in developmental processes.

小鼠-人类早期睾丸发育的差异及其意义
小鼠已被用作人类器官发生的模型,默认小鼠的形态发生和分子机制可转化为人类器官发生。虽然许多形态发生和分子机制在小鼠和人类中是共同的,但已经注意到许多解剖学、形态发生和基因的差异。在我们的知识中,有两个关键的空白阻碍了对小鼠和人类睾丸发育进行有意义的比较:(a)人类睾丸发育在文献中的代表性严重不足,以及(b)缺乏E11.5至E16.5小鼠睾丸发育的详细个体发生,包括生殖绳形成的两性阶段。为了解决这些缺陷,在小鼠和人类睾丸发育的可比阶段进行了组织学和免疫组织化学研究,通过回顾文献和新的观察结果,特别强调Leydig、Sertoli和myoid细胞。例如,雄激素受体阳性的睾丸髓质存在于发育中的人类睾丸中,但不存在于发育的小鼠睾丸中。人类睾丸髓质和相关的中肾历来被描述为生精索中支持细胞的来源。与这一观点一致的是,雄激素受体(AR)阳性的人类睾丸髓质被证明是间充质向上皮过渡的区域,也是AR阳性细胞似乎迁移到人类睾丸皮层的区域。虽然小鼠Sertoli和Leydig细胞已被认为来源于体腔上皮,但Sertoli(SOX9)或Leydig(HSD3B1)细胞标记物在发育中的人类睾丸的直接体腔区不存在,这可能是因为Leydig和Sertoli细胞前体在从体腔上皮排出时未分化。小鼠和人类类肌细胞的起源尚不清楚。这项研究对人类和小鼠睾丸发育的早期阶段进行了详细的比较,强调了发育过程的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Differentiation
Differentiation 生物-发育生物学
CiteScore
4.10
自引率
3.40%
发文量
38
审稿时长
51 days
期刊介绍: Differentiation is a multidisciplinary journal dealing with topics relating to cell differentiation, development, cellular structure and function, and cancer. Differentiation of eukaryotes at the molecular level and the use of transgenic and targeted mutagenesis approaches to problems of differentiation are of particular interest to the journal. The journal will publish full-length articles containing original work in any of these areas. We will also publish reviews and commentaries on topics of current interest. The principal subject areas the journal covers are: • embryonic patterning and organogenesis • human development and congenital malformation • mechanisms of cell lineage commitment • tissue homeostasis and oncogenic transformation • establishment of cellular polarity • stem cell differentiation • cell reprogramming mechanisms • stability of the differentiated state • cell and tissue interactions in vivo and in vitro • signal transduction pathways in development and differentiation • carcinogenesis and cancer • mechanisms involved in cell growth and division especially relating to cancer • differentiation in regeneration and ageing • therapeutic applications of differentiation processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信